Challenges and Perspectives for the TCO and Metal Electrodes in Perovskite-Silicon Tandem Solar Cells: Performance and Scalability

Martin Bivour, Christoph Messmer¹, Leonard Tutsch, Sebastian Pingel, Estelle Gervais, Denis Erath, Thibaud Hatt, Jörg Schube, Katharina Gensowski, Mike Jahn, Torsten Rössler, Andreas Lorenz, Jonas Bartsch, Sebastian Nold, Achim Kraft, Jan Christoph Goldschmidt, Florian Clement, Martin Hermle

Fraunhofer Institute for Solar Energy Systems ISE
¹INATECH, University of Freiburg, Germany

10th Metallization and Interconnection Workshop 2021
16th November 2021
Motivation: PV Will/Must Reach Terrawatt Scale in ~10 Years
Production Landscape Has to Adapt to Allow Massive Grows

- Predicted PV grows\(^1\)
 - 2030: ~1 - 2 TW\(_p\) per year
 - 2100: ~3 - 9 TW\(_p\) per year

\(^1\)J.C. Goldschmidt et.al. (2021), DOI: 10.1039/d1ee02497c
Motivation: PV Will/Must Reach Terrawatt Scale in ~10 Years
Production Landscape Has to Adapt to Allow Massive Grows

Key factors (amongst others)1 are

- Efficient and sustainable use of materials
 - CO\textsubscript{2} / energy consumption
 - Metals for conductors / electrodes3,4
- High conversion efficiency
 - Tandem cell technology

→ Substantial innovation along the PV landscape mandatory

1 J.C. Goldschmidt et.al. (2021), DOI: 10.1039/d1ee02497c
2 https://www.un.org/sustainabledevelopment/sustainablegoals/
3 E. Gervais et al, Renewable and Sustainable Energy Reviews 137 (2021)
4 Y Zhang et al, Energy Environ. Sci., 14, 5587 (2021)
Perovskite Based Tandem Technology
Towards 30% Module Efficiency

- High efficiency proven on lab-scale
- Strong focus on upscaling challenges
 - High-throughput processing
 - Large-area processing

4 x 0.25 cm2
7 x 2 cm2
1 x 274 cm2

1A. ur Rehman et al, PIP (2021) https://doi.org/10.1002/pip.3499
Tandem Technology: Low-Current / High-Voltage Devices
Higher Tolerance for Series Resistance

\[P_{\text{loss,TCO}} = \frac{I_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2 \]

\[P_{\text{loss,finger}} = \frac{I_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} d_{\text{BB}}^2 d_{\text{finger}} \]
Tandem Technology: Low-Current / High-Voltage Devices
Higher Tolerance for Series Resistance / Lower Tolerance for Optical Losses

- 1 mA/cm² J_{sc} loss
- Si cell ~ 0.6 % η loss
- Tandem cell ~ 1.5 % η loss

![Diagram of tandem cell technology with labels for $R_{s,grid}$, $R_{TCO,lateral}$, $R_{metal/TCO}$, $R_{absorber,lateral}$, and $R_{e-contact}$]

![Graph showing $V_{oc,1Sun}$ vs J_{sc} for cSi single junction cell, PK single junction cell, and PK / cSi tandem with different R_s related FF loss (%/Wcm²) at various $V_{oc,1Sun}$ levels (630, 730, 1100, 1700 mV).]
Perovskite / Si Tandem Modules
Higher Series Resistance Tolerance Partly Offset by ……

\[P_{\text{loss}, \text{TCO}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2 \]

\[P_{\text{loss}, \text{finger}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} d_{\text{BB}}^2 d_{\text{finger}} \]

Compared to SHJ cells\(^1\)

- No addition lateral transport provided by absorber

\(^1\)C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Perovskite / Si Tandem Modules

Higher Series Resistance Tolerance Partly Offset by ……

\[P_{\text{loss,TCO}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2 \]

\[P_{\text{loss,finger}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} d_{\text{BB}}^2 d_{\text{finger}} \]

Compared to SHJ cells\(^1\)

- No addition lateral transport provided by absorber
- TCO does not provide anti-reflection properties, hence ideal TCO is thinner

\(^1\)C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Perovskite / Si Tandem Modules
Higher Series Resistance Tolerance Partly Offset by …

\[P_{\text{loss,TCO}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2 \]

\[P_{\text{loss,finger}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} d_{\text{BB}}^2 d_{\text{finger}} \]

\(^1\)C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Perovskite / Si Tandem Modules

Higher Series Resistance Tolerance Partly Offset by …

- \(P_{\text{loss,TCO}} = \frac{J_{\text{mp}}}{V_{\text{mp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2 \)

- \(P_{\text{loss,finger}} = \frac{J_{\text{mp}}}{V_{\text{mp}}} \frac{1}{12} \rho_{\text{finger}} d_{BB}^2 d_{\text{finger}} \)

Compared to SHJ cells\(^1\)

- No addition lateral transport provided by absorber
- TCO does not provide anti-reflection properties, hence ideal TCO is thinner

- High \(\mu \)-TCOs can not be applied
 - Indium in the TCO is used less efficiently \((g/W)\)

\(^1\)C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Perovskite / Si Tandem Modules
Higher Series Resistance Tolerance Partly Offset by …

- \(P_{\text{loss,TCO}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2 \)

- \(P_{\text{loss,finger}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} d_{\text{finger}}^2 d_{\text{BB}} \)

Compared to SHJ cells, the higher series resistance tolerance is partly compensated by:

- No additional lateral transport provided by absorber
- Ideal TCO thickness is much thinner since TCO does not provide anti-reflection properties
- High \(\mu \)-TCOs are not applicable since annealing > 150°C needed
- Higher finger resistance (lower annealing temperature)

\(^1\)C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
\(^2\)L. Tutsch et al. PIP 29/7 (2021), https://doi.org/10.1002/pip.3388
Perovskite / Si Tandem Modules
Higher Series Resistance Tolerance Partly Offset by ……

\[P_{\text{loss,TCO}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} a_{\text{finger}}^2 \]

\[P_{\text{loss,finger}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} a_{\text{BB}}^2 d_{\text{finger}} \]

Compared to SHJ cells:\(^1\)

- No addition lateral transport provided by absorber
- TCO does not provide anti-reflection properties, hence ideal TCO is thinner
- High \(\mu\)-TCOs can not be applied
- Indium in the TCO is used less efficiently (g/W)
- Finger resistivity is rather high
- Ag in the paste is used less efficiently (g/W)

\(^1\)C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Perovskite / Si Tandem Modules

Higher Series Resistance Tolerance Partly Offset by ……

\[P_{\text{loss, TCO}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2 \]

\[P_{\text{loss, finger}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} d_{\text{BB}}^2 d_{\text{finger}} \]

Compared to SHJ cells, the higher series resistance tolerance is partly compensated by

- No additional lateral transport provided by absorber
- Ideal TCO thickness is much thinner since TCO does not provide anti-reflection properties
- High µ-TCOs are not applicable since annealing > 150°C needed
- Higher finger resistance (lower annealing temperature)

1C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Perovskite / Si Tandem Modules
Higher Series Resistance Tolerance Partly Offset by …

- $P_{\text{loss, TCO}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} R_{\text{TCO}} d_{\text{finger}}^2$
- $P_{\text{loss, finger}} = \frac{J_{\text{mpp}}}{V_{\text{mpp}}} \frac{1}{12} \rho_{\text{finger}} d_{\text{BB}} d_{\text{finger}}$

Compared to SHJ cells\(^1\):
- No addition lateral transport provided by absorber
- TCO does not provide anti-reflection properties, hence ideal TCO is thinner
 - Conductivity-transparency trade-off is more pronounced
- High μ-TCOs can not be applied
 - Indium in the TCO is used less efficiently (g/W)
 - Finger resistivity is rather high
 - Ag in the paste is used less efficiently (g/W)
 - Current back-end temperature constrains limit TCO’s and metal’s conductivity

\(^1\) C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Simulation Based Technology Evaluation
The Interplay Between TCO-, Grid- and Cell Interconnection Electrode

- Thin high-µ front side TCO (~70 nm)
- Pitch 1.5 mm (~2 mm)
- Lowest LCOE → 57 mg Ag (~40 mg)
- 7 wires / shingle segments
 → Higher requirements for front side TCO and Ag compared to SHJ

© Fraunhofer ISE
FHG-SK: ISE-INTERNAL

C. Messmer et al. PIP (2021), https://doi.org/10.1002/pip.3491
Capacity Expansion Limit by TCO-, Grid- and Cell Interconnection Electrodes
Efficient Use / Avoidance of Ag, In and Bi

Supply potential / t	Share for PV / %	Allocated for tandem / %
Ag | 28840 | 10 | 100
Bi | 10901 | 2.8 | 100
In | 2961 | 9 | 100

E. Gervais et al, Renewable and Sustainable Energy Reviews 137 (2021)
Capacity Expansion Limit by TCO-, Grid- and Cell Interconnection Electrodes
Efficient Use / Avoidance of Ag, In and Bi

<table>
<thead>
<tr>
<th>Interconnection</th>
<th>Grid</th>
<th>TCO / nm (ITO)</th>
<th>Capacity Limit / GWp/a Bi / Ag / In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>solderwire</td>
<td>Ag-SP</td>
<td>20/20/70 170 / 260 / 70</td>
</tr>
</tbody>
</table>

Supply potential allocated to tandem
- In
- Ag
- Bi
Demand tandem
- In
- Ag-SP + wire
- Bi solder

E. Gervais et al, Renewable and Sustainable Energy Reviews 137 (2021)
Capacity Expansion Limit by TCO-, Grid- and Cell Interconnection Electrodes

Efficient Use / Avoidance of Ag, In and Bi

<table>
<thead>
<tr>
<th>Interconnection</th>
<th>Grid</th>
<th>TCO / nm (ITO)</th>
<th>Capacity Limit / GWp/a Bi / Ag / In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>solder</td>
<td>20/20/70</td>
<td>170 / 260 / 70</td>
</tr>
<tr>
<td>B</td>
<td>solder</td>
<td>20 / - / -</td>
<td>170 / 260 / 380</td>
</tr>
</tbody>
</table>

1E. Gervais et al, Renewable and Sustainable Energy Reviews 137 (2021)
Capacity Expansion Limit by TCO-, Grid- and Cell Interconnection Electrodes
Efficient Use / Avoidance of Ag, In and Bi

Table:

<table>
<thead>
<tr>
<th>Interconnection</th>
<th>Grid</th>
<th>TCO / nm (ITO)</th>
<th>Capacity Limit / GWp/a Bi / Ag / In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>solderwire</td>
<td>20/20/70</td>
<td>170 / 260 / 70</td>
</tr>
<tr>
<td>B</td>
<td>solderwire</td>
<td>20 / - / -</td>
<td>170 / 260 / 380</td>
</tr>
<tr>
<td>C</td>
<td>ECA BB</td>
<td>20 / - / -</td>
<td>/ 150 / 380</td>
</tr>
</tbody>
</table>

Graph:
- Supply potential allocated to tandem
- Demand tandem
- Materials: Bi / Ag / In

Figure from E. Gervais et al, Renewable and Sustainable Energy Reviews 137 (2021)
Capacity Expansion Limit by TCO-, Grid- and Cell Interconnection Electrodes
Efficient Use / Avoidance of Ag, In and Bi

<table>
<thead>
<tr>
<th>Interconnection</th>
<th>Grid</th>
<th>TCO / nm (ITO)</th>
<th>Capacity Limit / GWp/a Bi / Ag / In</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>solder</td>
<td>Ag-SP</td>
<td>20/20/70</td>
</tr>
<tr>
<td>B</td>
<td>solder_wire</td>
<td>Ag-SP</td>
<td>20 / - / -</td>
</tr>
<tr>
<td>C</td>
<td>ECA_{BB}</td>
<td>Ag-SP_{BB}</td>
<td>20 / - / -</td>
</tr>
<tr>
<td>D</td>
<td>ECA_{BB}</td>
<td>Cu-plating</td>
<td>20 / - / -</td>
</tr>
</tbody>
</table>

E. Gervais et al, Renewable and Sustainable Energy Reviews 137 (2021)
More Efficient Use / Avoidance of Ag, In and Bi
Printing and Cell Interconnection Activities at Fraunhofer ISE

- Wide scope on screening and optimizing TCOs, pastes, curing and printing techniques for industrial ultra-low temperature metallization
Optimizing and adapting screen printing to lower temperatures and different substrate
More Efficient Use / Avoidance of Ag, In and Bi
Printing and Cell Interconnection Activities at Fraunhofer ISE

- Optimizing and adapting screen printing to lower temperatures and different substrate
- Parallel dispensing to further improve utilization of Ag
 - Promising results for thin-film PV1,2

1 Gensowski et al., EU PVSEC (2020)
2 Gensowski et al., Solar RRL (2020)
More Efficient Use / Avoidance of Ag, In and Bi

Printing and Cell Interconnection Activities at Fraunhofer ISE

- Optimizing and adapting screen printing to lower temperatures and different substrate
- Parallel dispensing to further improve utilization of Ag
 - Promising results for thin-film PV\(^1,2\)
- FlexTrail for ultra-narrow fingers below 10 µm\(^3,4,5\)
 - And very good aspect ratio

\(^1\) J. Schube et al., *PhD thesis*, 2021
\(^2\) J. Schube et al., *pss RRL*, 2019
\(^3\) J. Schube et al., *8th Met. Workshop*, 2019

PV Nano Cell is acknowledged for providing the paste
More Efficient Use / Avoidance of Ag, In and Bi
Printing and Cell Interconnection Activities at Fraunhofer ISE

- Optimizing and adapting screen printing to lower temperatures and different substrate
- Parallel dispensing to further improve utilization of Ag
 - Promising results for thin-film PV1,2
- FlexTrail for ultra-narrow fingers below 10 µm
 - And very good aspect ratio
- Substitute Ag by Cu
 - Paste, ECA, Plating
Cu contacts can be electroplated on perovskite cells.

Perovskite solar cells survive wet-chemical electroplating process.

Also addressing Cu grid lines on TCO+glass for thin film modules.

More Efficient Use / Avoidance of Ag, In and Bi

Proof of Concept For Cu Plating on Perovskite
Summary

- **Further technological learning** mandatory to address the upcoming challenges of the Terrawatt market
- **Sustainability** aspects **must** be considered for engineering of cells / modules
- Very high efficiency for mainstream market → Perovskite based tandems would be ideal candidate

- **Current design** of electrodes likely **limit** the projected **upscaling** of Pero/Si tandem, despite the higher series resistance tolerance

- Increasing the back-end temperature is an important step to benefit from learnings of Si technology (SHJ)
Thank you for your Attention! Thank you for your Attention! Thanks to all Co-Workers! Thanks to all Co-Workers!

- Martin Bivour
- www.ise.fraunhofer.de
- Martin.Bivour@ise.fraunhofer.de

Presto (FKz. 03EE1086A)

MaNiTu
Fraunhofer Leitprojekt