cea liten

ASSEMBLY

Reduction of silver usage in ECA based interconnection

Rémi Monna⁽¹⁾, Corentin Lucas⁽¹⁾, Vincent Barth⁽¹⁾, Bertrand Hladys⁽¹⁾, Johann Jourdan⁽¹⁾, Eszter Voroshazi⁽¹⁾, Rui de Almeida⁽²⁾, Olivier Caulle⁽²⁾, Xabier Hernandez⁽³⁾, Jean-Philippe Aguerre⁽³⁾

¹CEA-LITEN, **INES**, 50 avenue du Lac Léman, F-73375 Le Bourget-du-Lac, France

²Mondragon Assembly S.A., 1376 route de Lyon, 84100 Orange, France

³Mondragon Assembly S.Coop , Industrial Bainetxe, 20550 Aretxabaleta, Spain

Challenges of TW scale PV manufacturing

Solar Power Europe, Global PV market Forecast, 2022, B. Hallam et al. 2022

Abundance of elements in the Earth's upper crust (G. Haxel 2018)

- Silver availability is one of the most alarming concerns for the expansion of the PV industry at the TWp scale
- Currently the PV industry is using more than 15 % globally available Ag
- Current projection indicate that latest cell technologies of TOPCON and SHJ technologies would require the entire supply of Ag -> Ag reduction is a must !

Gluing with ECAs for HJT and TANDEMS

Electrically Conductive Adhesive (ECA)

- Conductive particles (approx 40-70 w% Ag)
- Epoxy or Acrylate Matrix

- Reliability proven process
- Lead and Bismuth free
- Low T process < 200°C
- Copper based ECA available now

- ECA Mondragon TABBER STRINGER
 - Multi-ribbon handling up to 20 wires & ribbons
 - G12 cells compatible @ INES
 - Thin cell handling down to 110 µm
 - Independent printing of the 2 cell sides
 - Provide developed curing profiles
 - Gapless and Paving compatible

OMION

~

0

Finding a balance between critical material usage and performance, while maintaining reliability

Experimental workflow

MONDRAGON ASSEMBLY

nes

INSTITUT NATIONAL

cea

INITIAL Performances (T0)

FF according to the Amount of

deposited ECA

- Busbar cell: Initial performance independent of the amount of ECA
- Busbarless configuration: Initial performance is closely related to the amount of ECA
- Good initial performances around 27 mg/Wp Ag total consumption

FF according to the total Ag weight /Wp

(Total Ag : ECA + Ribbon + Cells)

37.0

Fill Factor losses after 600 TC

FF loss according to the amount

FF loss according to the total Ag weight /Wp

of deposited ECA

- Decrease of power mainly due to FF
- In the both configurations, the FF losses are closely related to the amount of deposited ECA
- Same tendencies as after 200 & 400 TC
- Less than 2.5 % degradation after 600 TC with 27 mgAg/W in the module

EL characterization : Busbarless Cells

- EL degradation on the borders after 600 TC and depends on the amount of deposited ECA
- Higher degradation observed than on Busbar Cells
- No Isc and Voc degradation after TC (1 SUN I-V)

-> FF degradation is linked to an increase of the series resistance on BB0 and Busbar Cells

Low Ag content ECA and Ag/Cu Cell Metallization

- FF loss in function of Ag weight /Wp
 (Total Ag : ECA + Ribbon + Cells)
- 1 Busbar configuration

- ECAs with reduced Silver content (< 40 %) show impressive results : 2 % FF loss after 600 TC
- Silver-Copper metallized cells allows to reach a low total
 Ag consumption close to 25 mg/Wp with a degradation of
 2 % after 600 TC

9

Conclusion of the study

- Reliability of ECA gluing interconnection (in TC) in both busbarless and busbar cell configurations is closely related to the amount of deposited ECA
- Ag content in ECA can be lowered with no impact
- AgCu cell metallization allows to reach a low total Ag consumption close to 25 mg/W on modules with a degradation of 2 % after 600 TC
- On BB0 cells (-5mg/W), a consumption of 16 mg/Wp should be reachable in short term on HJT modules by coupling Ag/Cu metallization and low Ag content ECA

Strategies for further Ag reduction

- Improved deposition accuracy (< 100 µm)
- Ribbons with Ag-free coating
- Wire gluing
- Novel Cu-particle based ECAs
- Perovskite devices interconnection

Radical reduction of Ag metallization is a must for TW scale manufacturing in PV We must target 5-10 mg/Wp by 2030

Thank you for your attention

