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Electrically Conductive Adhesive
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Polymer matrix

Lead, Bismuth, Indium free

Low temperature interconnection solution compatible with perovskite material

Understanding the mechanical and electrical behaviour to 
assess the failure mechanism

Conductive
particles



   

                                 

1. Process development
1. Differential Scanning Calorimetry (DSC)
2. Rheological behaviour

2. Mechanical behaviour
1. Dynamic Mechanical Analysis (DMA)
2. Double Cantilever Beam (DCB)

3. Scanning Electron Microscope (SEM)

Methodology
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Process
development1
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 To detect physical transformations of samples
→ Cross-linking temperature
→ Chemical kinetic 
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DSC
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 Large variety of crosslinking behaviour:
• Ultra fast cross-linking at usual curing temperature
• Time up to 60 s to complete crosslinking at 180°C

• Two differents processes to deal with:
• BB ECA: need to be fast with a weak ribbons-ECA interface
• Shingle: could take more time with strong Si-ECA interface

• Some ECAs with possible compatibility with tandem PK process
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→ Evaluate ECA curing time process



    

 Rheofluidifying material
 Decrease of viscosity with increase of shear rate
 Non-newtonian behaviour

 Critical shear test value: 650 s-1:
 Decrease of the viscosity

 Going further:
 𝛾̇𝛾 = 𝑣𝑣𝑝𝑝

𝑇𝑇
with vp = 300mm/s and T=60µm

 Shear rate can reach 5000s-1 in stringer
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Rheological behaviour
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 Decrease of viscosity before stabilization
 Cycle 1 shows the highest viscosity
 Stabilization around cycle 3/4

 Irregular behaviour at high shear rate

 Could lead to higher mass deposition during
production day
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Rheological behaviour
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→ Evaluate ECA deposition process during production day
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Mechanical
characterization2
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 Materials can be subjected to 3 possible fracture mode:
 Opening (I)
 Shearing (II)
 Bending (III)

 Fracture propagation is allowed by the elastic energy already stored in the system 
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Some theory
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 Focus on mode I:
 the weakest mode
 is likely to occur for the shingle interconnection

 How to characterize:
 type of failure
 critical energy release rate

[1] M. Springer and N. Bosco, ‘Linear viscoelastic characterization of electrically conductive adhesives used as interconnect in photovoltaic modules’,
Progress in Photovoltaics: Research and Applications, vol. 28, no. 7, pp. 659–681, 2020, doi: 10.1002/pip.3257.

From [1]

From [1]

https://doi.org/10.1002/pip.3257
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DCB theory
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■ Failure behaviour of the ECA
■ Mechanical response

■ First a loading regime (𝐹𝐹 ∝ 𝑢𝑢)
■ Second an opening regime (F ∝ 1/ 𝑢𝑢)

■ Pre-factor depends on geometrical features (& cells stiffness)
■ Fracture energy 𝑮𝑮𝒄𝒄 depends on fracture type

Sketch of the expected mechanical response in DCB



    

■ Typical values for polymer adhesives

■ ECAs failures are cohesive (no bonding issues)

■ N, L & M have the highest fracture energy (cohesive fracture)

■ J & K  failure energies are quite small
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DCB – comparative results
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→ Fracture energy evaluation
To be compared with module reliability



    

Sample manufacturing Process
■ Polymerization of ECAs in a rectangular mold
■ ECAs poured into molds at ambient temperature
■ Production of 4-8 samples per ECA type 
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DMA
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Sample aspect (after selection):
 Some surface roughness
 No macro-porosity issue

Testing mode: Tension film
 Frequency-Temperature sweep

■ Viscoelastic behaviour of the ECA 
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DMA
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 Similar behaviour at low temperature with storage modulus ~ 4GPa

 Variety of behaviour between ECA but two groups could be identified
 Group 1 with Tg between 20 and 50°C and a stable behaviour at high temperature
 Group 2 with Tg above 100°C and no stable behaviour at high temperature

 ECA A and I show different behaviour among all other ECA



    

 Some DMA samples were submitted to thermal cycling test
(with standard amplitude and high amplitude)

 4 samples show no change at all

 One ECA shows Tg change after TC (mechanism under
investigation)
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DMA
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Scanning Electron 
Microscopy3
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SEM
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ECA crosslinked
without constraints

ECA crosslinked with
constraints

 SEM shows the importance to process
correctly the ECA to have a percolation way
through it

 To be done: effect of Thermal Cycling and CTE
mismatch between resin and conductive
particle



   

                                 

 ECA, as composite material, is a very broad material family

 Proper assessment of process characterization is important:
 Cross-linking temperature and kinetics for curing process  DSC
 Rheological behaviour for « Screen-printing » or dispense process Rheology

 Mechanical behaviour
 Understand viscoelastic behaviour and failure behaviour DCB + DMA
 Further understanding of ageing effect

 Microscopy to visualize ECA organization  SEM

Conclusion
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 Complete characterization for all ECA

 Assess behaviour before/after ageing (TC / DH / HF)

 Link the behaviour to module performance and reliability/durability

To go further
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