

Methodology of ECA material characterization and qualification

<u>V. Barth</u>, JB. Charpentier, M. Courtant, T. Bejat, N. Ronayette, R. Monna, E. Voroshazi Université Grenoble Alpes, CEA-LITEN, INES, 50 avenue du Lac Léman, 73375 Le Bourget-du-Lac, France

Electrically Conductive Adhesive

- Low temperature interconnection solution compatible with perovskite material
- **V** Lead, Bismuth, Indium free

Understanding the mechanical and electrical behaviour to assess the failure mechanism

Methodology

1. Process development

- 1. Differential Scanning Calorimetry (DSC)
- 2. Rheological behaviour

2. Mechanical behaviour

- 1. Dynamic Mechanical Analysis (DMA)
- 2. Double Cantilever Beam (DCB)

3. Scanning Electron Microscope (SEM)

Process development

DSC

- To detect physical transformations of samples
 - \rightarrow Cross-linking temperature
 - \rightarrow Chemical kinetic

- Large variety of crosslinking behaviour:
 - Ultra fast cross-linking at usual curing temperature
 - Time up to 60 s to complete crosslinking at 180°C
- Two differents processes to deal with:
 - BB ECA: need to be fast with a weak ribbons-ECA interface
 - Shingle: could take more time with strong Si-ECA interface
- Some ECAs with possible compatibility with tandem PK process

→ Evaluate ECA curing time process

Rheological behaviour

- Rheofluidifying material
 - Decrease of viscosity with increase of shear rate
 - Non-newtonian behaviour
- Critical shear test value: 650 s⁻¹:
 - Decrease of the viscosity
 - Going further:

- $\dot{\gamma} = \frac{v_p}{T}$ with $v_p = 300$ mm/s and T=60 μ m
- Shear rate can reach 5000s⁻¹ in stringer

6

Rheological behaviour

- Decrease of viscosity before stabilization
 - Cycle 1 shows the highest viscosity
 - Stabilization around cycle 3/4
- Irregular behaviour at high shear rate
- Could lead to higher mass deposition during production day

→ Evaluate ECA deposition process during production day

Dechanical Characterization

[1] M. Springer and N. Bosco, 'Linear viscoelastic characterization of electrically conductive adhesives used as interconnect in photovoltaic modules', Progress in Photovoltaics: Research and Applications, vol. 28, no. 7, pp. 659–681, 2020, doi: <u>10.1002/pip.3257</u>.

From [1] 11th MIW - Neuchâtel [1] M. Springer and N. Bosco, 'Linear viscoelastic characterization of electrically conductive adhesives used as interco

9

09/05/2023

Cross section of shingled silicon cell PV module

Mode I (opening)

• Materials can be subjected to 3 possible fracture mode:

- Opening (I)
- Shearing (II)
- Bending (III)
- Fracture propagation is allowed by the elastic energy already stored in the system

- - Focus on mode I:

Some theory

- the weakest mode
- is likely to occur for the shingle interconnection
- How to characterize:
 - type of failure
 - critical energy release rate

Gc, fracture energy

≻ u (mm)

- Failure behaviour of the ECA
- Mechanical response

DCB theory

- First a loading regime $(F \propto u)$
- Second an opening regime ($F \propto 1/\sqrt{u}$)
 - Pre-factor depends on geometrical features (& cells stiffness)
- Fracture energy G_c depends on fracture type

DCB – comparative results

Viscoelastic behaviour of the ECA

Sample manufacturing Process

- Polymerization of ECAs in a rectangular mold
- ECAs poured into molds at ambient temperature
- Production of 4-8 samples per ECA type

Sample aspect (after selection):

- Some surface roughness
- No macro-porosity issue

Testing mode: Tension film

Frequency-Temperature sweep

Storage Modulus (MPa)

- Similar behaviour at low temperature with storage modulus ~ 4GPa
- Variety of behaviour between ECA but two groups could be identified
 - Group 1 with Tg between 20 and 50°C and a stable behaviour at high temperature
 - Group 2 with Tg above 100°C and no stable behaviour at high temperature
- ECA <u>A</u> and <u>I</u> show different behaviour among all other ECA

DMA

- Some DMA samples were submitted to thermal cycling test (with standard amplitude and high amplitude)
- 4 samples show no change at all
- One ECA shows Tg change after TC (mechanism under investigation)

B Scanning Electron Microscopy

without constraints

 SEM shows the importance to process correctly the ECA to have a percolation way through it

ECA crosslinked with constraints

 To be done: effect of Thermal Cycling and CTE mismatch between resin and conductive particle

Conclusion

ECA, as composite material, is a very broad material family

Proper assessment of process characterization is important:

Mechanical behaviour

- Further understanding of ageing effect

Microscopy to visualize ECA organization → SEM SEM

To go further

Complete characterization for all ECA

Assess behaviour before/after ageing (TC / DH / HF)

Link the behaviour to module performance and reliability/durability

Outils et publication 0 FR | EN

city

city

Nos champs d'applications

Photovoltaïque haut rendement

Le solaire photovoltaique haut rendement à forte compétitivité

Photovoltaïque intégré X-IPV

Le solaire intégré pour toutes applications

Photovoltaïque et stockage au service du mix énergétique

Solutions pour l'intégration massive du photovoltaïque

Du bâtiment à la smart- Les Smart-grids multi énergies

Le bâtiment, nœud énergétique au cœur de la smart- Les réseaux intelligents au service des territoires

Économie et environnement

Vers une maîtrise de l'impact environnemental des dispositifs photovoltaïques

