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Electrically Conductive Adhesive

Polymer matrix

& Low temperature interconnection solution compatible with perovskite material

& Lead, Bismuth, Indium free

Understanding the mechanical and electrical behaviour to
assess the failure mechanism
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Methodology

1. Process development
1. Differential Scanning Calorimetry (DSC)
2. Rheological behaviour

2. Mechanical behaviour
1. Dynamic Mechanical Analysis (DMA)
2. Double Cantilever Beam (DCB)

3. Scanning Electron Microscope (SEM)
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= To detect physical transformations of samples
— Cross-linking temperature

Heat Flow (W/g)
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— Chemical kinetic
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.  Ultra fast cross-linking at usual curing temperature
120 A% « Time up to 60 s to complete crosslinking at 180°C
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2 o] e 1 < Two differents processes to deal with:
" -+ BB ECA: need to be fast with a weak ribbons-ECA interface
60 « Shingle: could take more time with strong Si-ECA interface
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- Evaluate ECA curing time process

Temperature (°C)
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Rheological behaviour
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Rheofluidifying material

= Decrease of viscosity with increase of shear rate

= Non-newtonian behaviour

Critical shear test value: 650 s:
= Decrease of the viscosity

Going further:

=y = va with Vp = 300mm/s and T=60um

= Shear rate can reach 50005'1_in stringer
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Rheological behaviour

107 g——rrree

106 _\\
] :':'.>',...

-
o
Gyl

N
o
~

Viscosity [mPa.s]

-
o
w

102

0,001 0,01

@ 11t MIW - Neuchatel

0,1

Shear Rate [1/s]

SR
100

1000

] —Up1
1 —— Down 1
|---Up2
i/~ - -Down 2

- Up 3
- Down 3

-~ Up4
11— — Down 4

Decrease of viscosity before stabilization
= Cycle 1 shows the highest viscosity
= Stabilization around cycle 3/4

Irregular behaviour at high shear rate

Could lead to higher mass deposition during
production day

- Evaluate ECA deposition process during production day
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Some theory

Mode I (opening)
|::—‘—-——‘‘"''——-''':EJT.;':::—"':-"-:"::l = Materials can be subjected to 3 possible fracture mode:
4 = Opening (1)
Mode II (shearing) = Shearing (ll)
I::';'EEE:?::: = Bending (Il
Mixed mode (bending) = Fracture propagation is allowed by the elastic energy already stored in the system
W Cross section of shingled silicon cell PV module
From [1] Fracture modes

= Focus on mode I:
= the weakest mode
= s likely to occur for the shingle interconnection ECA joint detail

2B

cohesne failure adhesive failure
(debonding)

= How to characterize:
= type of failure
= critical energy release rate

Possible failure modes

From [1]
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[1] M. Springer and N. Bosco, ‘Linear viscoelastic characterization of electrically conductive adhesives used as interconnect in photovoltaic modules’,
Progress in Photovoltaics: Research and Applications, vol. 28, no. 7, pp. 659-681, 2020, doi: 10.1002/pip.3257.
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DCB theory ,

m Failure behaviour of the ECA
m Mechanical response
m First a loading regime (F « u)

m Second an opening regime (F « 1/y/u)
m Pre-factor depends on geometrical features (& cells stiffness)

m Fracture energy G, depends on fracture type

Sketch of the expected mechanical response in DCB
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DCB - comparative results
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Typical values for polymer adhesives
ECAs failures are cohesive (no bonding issues)
N, L & M have the highest fracture energy (cohesive fracture)

J & K failure energies are quite small

-» Fracture energy evaluation
To be compared with modaule reliability
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DMA

m Viscoelastic behaviour of the ECA

Sample manufacturing Process

m Polymerization of ECAs in a rectangular mold

m ECAs poured into molds at ambient temperature
m Production of 4-8 samples per ECA type
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Sample aspect (after selection):

=  Some surface roughness
=  No macro-porosity issue

Testing mode: Tension film
=  Frequency-Temperature sweep
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DMA
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=  Similar behaviour at low temperature with storage modulus ~ 4GPa

= Variety of behaviour between ECA but two groups could be identified
=  Group 1 with Tg between 20 and 50°C and a stable behaviour at high temperature
=  Group 2 with Tg above 100°C and no stable behaviour at high temperature

= ECA A and | show different behaviour among all other ECA
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DMA

200 A ==

I '
_ I % I 1. Some DMA samples were submitted to thermal cycling test
s 0 (with standard amplitude and high amplitude)
o 504 I + - = : | = 4 samples show no change at all
|
o E ?_. i | = One ECA shows Tg change after TC (mechanism under
investigation)
A F 0] | P
ECA
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icroscopy

Scanning Electron

3

11t MIW - Neuchatel




ECA crosslinked
without constraints

W

pressure

ECA crosslinked with
constraints

SEM shows the importance to process
correctly the ECA to have a percolation way
through it

To be done: effect of Thermal Cycling and CTE
mismatch between resin and conductive
particle
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Conclusion

ECA, as composite material, is a very broad material family

= Proper assessment of process characterization is important:
= Cross-linking temperature and kinetics for curing process = DSC
= Rheological behaviour for « Screen-printing » or dispense process = Rheology

Mechanical behaviour

= Understand viscoelastic behaviour and failure behaviour 9 DCB + DMA
= Further understanding of ageing effect

Microscopy to visualize ECA organization @ SEM
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To go further

= Complete characterization for all ECA
= Assess behaviour before/after ageing (TC / DH / HF)

= Link the behaviour to module performance and reliability/durability
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