

Validation of methodology to determine the contact resistivity of ECA–based bonds

M. Ignacia Devoto*, Karl Wienands, Dominik

Rudolph, Tudor Timofte, Andreas Halm, Ralph Gottschalg and Daniel Tune

11th edition of MIW on May 8 & 9, 2023 in Neuchâtel

Outline

- Introduction & motivation
- Transmission Line Method (TLM) test structure
- Analytical method to determine contact resistivity of ECA-based joints
- Validation procedure
- Validation results
 - Sample size not optimized
 - Sample size optimized
- Conclusions

Introduction and motivation

- ECAs \rightarrow Electrically conductive adhesives.
- Broad formulation:

09.05.2023

Conductive fillers (80-95 wt.%) + Insulating polymer matrix (5-20 wt.%)

• ECA advantages (✓) and disadvantages (×) compared to solder:

✓ Advantages			× Disadvantages		
Free of lead & flux	Low T & Flexible		High amount of	Lower thermal/electrical	
Fine pitch possible	Cured during lamination		Silver	Conductivity	
Excelent long-term stability			It bleeds	storage	

• ECA applications: IBC cells, shingling, VIPV, SHJ interconnection, conductive backsheets, tandem, etc.

3

Introduction and motivation

- ECA-based joints requires → long-term performance research
- Long-term research \rightarrow electrical characterization of the joint
- Figure of merit \rightarrow contact resistivity (ho_c)
- Literature and research groups focus on extrapolation of ρ_c using ECA-based joints with **multiple contact layers**.
- We aim to characterize ρ_c for **"pure" ECA-based joints**. That is, joints that only posses the adhesive adjacent to one adherend.
- This way we are able to see the contribution of the contact resistance separatedly.
- This work aims to validate a suitable analytical method to determine ho_c .

Adherend 2

Introduction and motivation

Adhesive	Adherend 1	Adherend 2	$oldsymbol{ ho}_{oldsymbol{c}}$ [m Ω cm²]
Not specified	Ag-coated ribbon	Low-temperature Ag paste	0.1
Ag-filled acrylate	Ag-coated ribbon	Sintered Ag paste	0.09 to 0.55
CNT-filled epoxy	Ag-coated ribbon	Sintered Ag paste	3.9
Ag- reduced silicone	Ag-coated Cu OSP-treated Cu	Not specified	<0.1
Not specified	Not specified	Not specified	0.07 to 0.6
Four ECAs	Evaporated Ag	Sn(Pb) Ag	0.1 to 1
Epoxy based	Ag-coated ribbon	Front Ag busbar	0.003 to 0.012
Epoxy based	Ag-coated ribbon	Rear Ag busbar	0.05 to 0.1

[1] T. Geipel, "Electrically conductive adhesives for photovoltaic modules," 2018.

TLM TEST STRUCTURE

Validation of methodology to determine the contact resistivity of ECA–based bonds

TLM test structure Test structure schematic and equivalent circuit diagram

Contacting probes for resistance measurements
 Wafer (physical support)
 Metal fingers

Needle/jet-dispensing

Microscope cover glass

ANALYTICAL METHOD

Validation of methodology to determine the contact resistivity of ECA–based bonds

Analytical method Finger and sheet resistance measurements

• Finger line resistance:

 $r_j = \frac{V_j}{I_{jk}} = \frac{R'_{m_j}}{l'_i}$

• Sheet resistance:

 $R_{s_i} = m_j$

Contacting probes for resistance measurements

Wafer (physical support)

Metal fingers

DC current source (\rightarrow)

ISC

Analytical method End-contact resistance measurement

• End-contact resistance:

$$R_{e_j} = \frac{V_{jk}}{I_{ij}} - r_j \cdot l_j''$$

 Contacting probes for resistance measurements

Metal fingers

ightarrow DC current source

ISC

Analytical method TLM model based on end-resistance

• Local transfer length:

$$R_{e_j} = R_{s_j} \cdot \boldsymbol{L_{t_j}} \cdot sinh^{-1} \left(\frac{L_j}{\boldsymbol{L_{t_j}}} \right)$$

Local contact length

$$\boldsymbol{L_j} = \frac{L_i + L_j + L_k}{3}$$

Local contact width:

$$\boldsymbol{W_j} = \frac{W_{ij} + W_{jk}}{2}$$

• Local contact resistivitiy:

$$\boldsymbol{\rho_{c_j}} = R_{s_j} \cdot W_j \cdot L_{t_j}^2$$

• Contact resistivity of sample:

$$\boldsymbol{\rho_c} = \sum_{j=2}^{N-1} \rho_{c_j}$$

[2] W. Shockley et al., "RESEARCH AND INVESTIGATION OF INVERSE EPITAXIAL UHF POWER TRANSISTORS," Sep. 1964.
 [3] H. Berger, "Contact resistance on diffused resistors," in **1969 IEEE International Solid-State Circuits Conference**. Digest of Technical Papers, 1969, pp. 160–161.

[4] H. H. Berger, "Contact Resistance and Contact Resistivity," J. Electrochem. Soc., vol. 119, no. 4, p. 507, 1972.

[5] H. H. Berger, "Models for contacts to planar devices," **Solid. State. Electron**., vol. 15, no. 2, pp. 145–158, Feb. 1972.

[6] G. K. Reeves and H. B. Harrison, "Obtaining the specific contact resistance from transmission line model measurements," **IEEE Electron Device Lett.**, vol. 3, no. 5, pp. 111–113, May 1982.

[7] L. Gutai, "Statistical modeling of transmission line model test structures. I. The effect of inhomogeneities on the extracted contact parameters," IEEE Trans. Electron Devices, vol. 37, no. 11, pp. 2350–2360, 1990.

[8] L. Gutai, "Statistical modeling of transmission line model test structures. II. TLM test structure with four or more terminals: a novel method to characterize non-ideal planar contacts in presence of inhomogeneities," **IEEE Trans. Electron Devices**, vol. 37, no. 11, pp. 2361–2380, 1990.

11

VALIDATION PROCEDURE

Validation of methodology to determine the contact resistivity of ECA–based bonds

Validation of analytical method Validation procedure (1)

• ECAs under study:

ECA	Polymer matrix	Filler	ρ (Ω cm)
ECA 1	Acryl	Ag	3.7 10 ⁻³
ECA 2	Ероху	Cu(Ag)	3.0 10-4

• Groups under study:

	G01	G02	G03	G04	G05	G06
Adhesive/ECA	ECA 1					
Wafer batch		Batch 1		Batch 2		
Jet-dispensing	Day1	Day2	Day3	Day1	Day2	Day3
	G07	G08	G09	G10	G11	G12
Adhesive/ECA	ECA 2					
	Batch 1			Batch 2		
Wafer batch		Datchill			Duttin 2	

- Validation procedure:
 - 1. Determination of proper sample size $n_i = depending$ on ECA.
 - 2. Random re-arrangement of samples into new groups of with proper sample size.
 - 3. Determination of how representative each group is when compared to ist respective population.
 - 4. The analytical method is fit for the intended purpose, if all groups are representative of their respective population.

 $n_i = \frac{z_i^2 \cdot \sigma^2}{\varepsilon_i^2} \quad s$

σ: populationstandard deviation

Definitions:

z_i: z-score of *i*th group (according to positive z-score tables)

 n_i : sample size of i^{th} group

 ε_i : error margin of i^{th} group.

5.2023 Validation of methodology to determine the contact resistivity of ECA–based bonds

Validation of analytical method Validation procedure (2)

- A group *G_i* is representative the population from which it was sampled if:
 - 1. The **sampling distribution** of the group can be approximated to a **normal distribution**.
 - 2. The **population mean**, μ , is within the **confidence range** determined by the group.

$$\overline{X}_i - \frac{z_i \sigma}{\sqrt{n_i}} \le \mu \le \overline{X}_i + \frac{z\sigma}{\sqrt{n_i}} \longrightarrow \text{ error margin}$$

3. The **mean square error (MSE)** of all observations within the group is comparable to the **population MSE**.

$$MSE_i = \frac{1}{m} \sum_{j=1}^{m} \left(X_{ij} - \mu \right)^2$$

m

Definitions:

μ: population mean

σ: population standard deviation

 \overline{X}_i : sample mean for *i*th group

z: z-score according to positive z-score tables

 n_i : sample size of the group

 X_{i_j} : j^{th} observation from i^{th} group

RESULTS ON THE VALIDATION

Validation of methodology to determine the contact resistivity of ECA-based bonds

Validation of analytical method Groups statistics (proper sample size **not defined**)

- Population mean for ECA 1 clearly differentiated from that of ECA 2.
- Neither the median nor the interquartile ranges from one ECA overlap with those of the other ECA.

ECA	Group	n	\overline{X}_i (m Ω cm ²)	ε (%)	LCI limit	UCI limit	ls μ included?
FCA 1	G01	23	0.1518	2.02	0.1315	0.1720	yes
	G02	23	0.1739	2.02	0.1537	0.1941	yes
	G03	18	0.1231	2.28	0.1003	0.1460	no
ECAI	G04	20	0.1814	2.17	0.1597	0.2031	yes
	G05	21	0.1943	2.12	0.1732	0.2155	no
	G06	19	0.1886	2.22	0.1663	0.2108	yes
	G07	25	0.4888	4.79	0.4409	0.5368	yes
	G08	23	0.4598	5.00	0.4098	0.5098	yes
ECA 2	G09	20	0.5956	5.36	0.5420	0.6492	no
ECA Z	G10	23	0.4065	5.00	0.3565	0.4564	no
	G11	24	0.5811	4.89	0.5322	0.6300	no
	G12	20	0.4629	5.36	0.4093	0.5165	yes

Validation of analytical method Determination of proper sample size

2023 Validation of methodology to determine the contact resistivity of ECA–based bonds

WORKSHOP 17

Validation of analytical method Sampling frequency distribution (e.g.,G01' & G09')

Validation of analytical method Trueness evaluation via confidence interval

- Population mean for ECA 1 clearly differentiated from that of ECA 2.
- Neither the median nor the interquartile ranges from one ECA overlap with those of the other ECA.

ECA	Group	\overline{X}_i (m Ω cm ²)	LCI limit	UCI limit	Is µ included?
ECA 1	G01'	0.1620	0.1418	0.1822	yes
	G02'	0.1590	0.1388	0.1792	yes
	G03'	0.1590	0.1388	0.1792	yes
	G04'	0.1860	0.1658	0.2062	yes
	G05'	0.1790	0.1588	0.1992	yes
ECA 2	G06'	0.5021	0.4521	0.5521	yes
	G07'	0.5343	0.4844	0.5843	yes
	G08'	0.4643	0.4143	0.5143	yes
	G09'	0.5253	0.4754	0.5753	yes
	G10'	0.4955	0.4455	0.5455	yes

95% confidence level

09.05.2023 Validation of methodology to determine the contact resistivity of ECA–based bonds

Validation of analytical method Precision evaluation via mean square error

ISC

CONCLUSIONS

Validation of methodology to determine the contact resistivity of ECA-based bonds

Conclusions

- It was demonstrated that realistic sample size can be determined with a minimum confidence level of 95% and a maximum error margin of 5%.
- It was shown that the sample size is highly dependent on the adhesive composition. Thus, the margin of error may be required to be relaxed for ECAs displaying high degrees of scattering/standard deviation.
- The sampling distribution was demonstrated to follow the central limit theorem and the law of large numbers.

Conclusions

- Accuracy of proper representative groups was evaluated via trueness and precision.
 - [trueness] The population mean was always found within the confidence interval in all groups.
 - [precision] The mean square error for the groups was comparable to the population.
- All groups with proper sample size were found to be representative of the population from where they were sampled.
- This work provided evidence that the analytical method is fit for the intended purpose.

Acknowledgements

 This work was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) as part of the Zquadrat and HoSSa projects with funding reference number 03EE1005A and 03EE1014D, respectively.

For further questions, please refer to Ignacia
 Devoto via ignacia.devoto@isc-konstanz.de

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

© ISC Konstanz e.V.

Validation of methodology to determine the contact resistivity of ECA–based bonds

11th edition of MIW on May 8 & 9, 2023 in Neuchâtel

Thank you for your attention