Fundamental Microscopic Studies on the Etching Behavior of Silver Pastes on Poly-Si/SiO$_x$ Passivating Contacts

Raphael Glatthaar1, Beatriz Cela Greven2, Tobias Okker1, Frank Huster1, Giso Hahn1, Barbara Terheiden1

1 University of Konstanz, 2 Fenzi AGT

MiW2023, Neuchâtel – May 8th, 2023
Etching of Ag Paste in Poly-Si/SiO\textsubscript{x} Contacts

- Etching results in Ag crystallites in poly-Si layer
- No penetration of c-Si substrate by Ag crystallites (planar samples)
- Ag crystallites remove nearly total poly-Si layer

How does the etching mechanism work for passivating contacts?
Impact on Ag Paste Etching Mechanism

Etching of SiNₓ/poly-Si/SiOₓ

Poly-Si layer properties
Deposition method
Surface
Layer stack

Poly-Si layer properties
Glass composition
Glass parameter
(Ag) particle size

Temperature
Atmosphere
Time

No complete overview
Impact on Ag Paste Etching Mechanism

Etching of SiN\(_x\)/poly-Si/SiO\(_x\)

Temperature

Atmosphere

Time

Poly-Si layer properties

Deposition method

Surface

Layer stack

Glass composition

Glass parameter

(Ag) particle size

Layer stack

Firing
Poly-Si Layer from Different Depositions Methods

- Ag crystallite formation comparable between APCVD and PECVD
- No statistically significant differences in glass layer thickness and Ag crystallite density
- ρ_c with <1 mΩcm2 slightly lower for PECVD samples (data not shown here)
Process Time Variation

1 s
- Poly-Si layer completely dissolved after 15 min
- Massive etching into c-Si substrate
- Formation of up to 500 nm Ag crystallites and thick glass layer

15 min
Temperature and Process Time Variation

1 min

- Slight and non-selective etching into poly-Si layer
- No Ag crystallite formation in poly-Si layer after 1 min

15 min

- Strong etching into c-Si substrate after 15 min
- Some Ag crystallites/phases visible after 15 min (detected by EDX)
Impact of Glass Frit Composition

Paste variations:

• Industrial paste formulation with
 o Pb based glass frit
 o Te based glass frit

• Experimental paste without glass frit
Impact of Main Component of Glass Frit

- Ag crystallite formation in poly-Si layer
- No statistically significant differences in glass layer thickness and Ag crystallite density
Ag Paste without Glass Frit

- Ag crystallite formation in poly-Si layer
- No etching into c-Si substrate visible
- Unclear why poly-Si layer is etched inhomogeneously
- Poly-Si identified by phosphorous peak in EDX
Ag Paste without Glass Frit

Cross section

- Ag crystallite formation in poly-Si layer
- No etching into c-Si substrate visible
- Contrast to samples with glass frit

Top view

15 min \(T_{\text{actual}} 829^\circ\text{C} \) Ar, RTP

Microscopic studies on the etching behavior of silver pastes on passivating contacts
Summary

- Multiple parameters influence crystallite formation

- APCVD or PECVD and Pb or Te based glass frit differ not significantly in contact formation

- Process temperature and time strongly influence etching behavior

- Etching of poly-Si layer by Ag$^+$ without glass frit possible
Thank you for your attention!

Questions!

Raphael Glatthaar
PhD Student · Department of Physics
University of Konstanz

raphael.glatthaar@uni-konstanz.de

This work was partially funded by the German Federal Ministry for Economic Affairs and Climate Action contract number 03EE1022C (project FUN) and by the Netherlands under the Dutch contract no. SOL18004 both within solar-era net.