The 11th edition of the Metallization and Interconnection Workshop for Crystalline Solar Cells - May 8 & 9, 2023

Deformation Behavior of Screen Mesh in Screen Printing and Its Effect on Printing Results

Tokiko Misaki¹, Toru Matsumoto¹, Hiroshi Shimizu², Hiroshi Nishida¹, Isao Sumita¹

1 Asada Mesh Co., Ltd. 23-7, Shindo-4, Matsubara, Osaka 580-0015, Japan 2 KOBELCO RESEARCH INSTITUTE INC., 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo, 651-2271, Japan

- Introduction
- Experiment
- Simulation
- Conclusions

- Introduction
- Experiment
- Simulation
- Conclusions

Positioning accuracy in screen printing

Y. Tao, et al, "High-efficiency selective boron emitter formed by wet chemical etch-back for n-type screen-printed Si solar cells" Appl. Phys. Lett. 110, p.021101 (2017)

> Need accurate metallization onto selective emitter

Trend: finger width

ITRPV 14th edition, March 2023 key findings & report presentation

Finer finger 15µm & Alignment precision 5µm @ 2033

Positioning accuracy in screen printing is an essential key to improving the performance of silicon solar cells. **ASADA MESH**

Factors affecting positioning accuracy of screen printing

- Environmental conditions
 - temperature & humidity
- Mechanical accuracy of printing equipment
 - vision system for the alignment mechanism
 - mechanical positioning of printing system
- Uniformity of mechanical properties of the screen

We focus on mesh deformation during printing, which causes misalignment of metallization.

Motivation

• This study aims to analyze;

 The printed positioning accuracy of screen printing <u>experiments</u> and <u>simulations</u> conducted under the same conditions to investigate the effect of screen mesh deformation

– <u>The effect of calendering process</u>

- Introduction
- Experiment
- Simulation
- Conclusions

Screen printing experiments

- Screen mesh
 - UHS-520/11 (11µm,#520)
 - Non-calendered, t=26µm
 - Calendered, t=11µm
 - Mesh bias angle: 22.5 degrees
 - Mesh on-screen frame: Direct-stretching
- Screen printing parameters
 - Print speed: 50mm/sec
 - Printing pressure: 45.3N
 - Squeegee length: 170mm
 - Print gap: 1.3mm

Image of screen and printed patterns

11

Pattern printed on a substrate is expanded and deformed

Definition of "Displacement" Displacement = |Printed – Screen|

ASADA MESH

Results - Displacement

The non-calendered mesh is more deformed than the calendered one.

ASADA MESH

- Introduction
- Experiment
- Simulation
- Conclusions

Simulation – FEM analysis

- Mesh : Orthotropic material
 - warp and weft
- Stress(σ)/Strain(ε) relationship equation for orthotropic materials

$$\begin{pmatrix} \varepsilon_T \\ \varepsilon_L \\ \varepsilon_{TL} \end{pmatrix} = \begin{bmatrix} 1/E_T & -\nu_{LT}/E_L & 0 \\ -\nu_{LT}/E_L & 1/E_L & 0 \\ 0 & 0 & 1/G_{LT} \end{bmatrix} \begin{pmatrix} \sigma_T \\ \sigma_L \\ \tau_{TL} \end{pmatrix}$$

(T=x, L=y) ε : Strain σ : Stress τ : Shearing stress v: Poisson's ratio E: Modulus of longitudinal elasticity

- G: Shearing modulus
- E, v, and G can be obtained by tensile tests in the warp, weft, and 45-degree directions of the mesh.

Tensile test of mesh

The in-plane stress-strain curves of the meshes in the direction of warp, weft, and 45degree were measured by the "image correlation method"

Test specimen

UHS-520/11 (11 μ m,#520), 6 pieces (without emulsion) a) Non-calendered mesh (t=26 μ m) x 3 directions (0°,45°,90°) b) calendered mesh (t=11 μ m) x 3 directions (0°,45°,90°)

Caluculated E, v, and G

The following parameters are calculated from the results of tensile tests of the meshes

	<i>E_{L(0°)}*</i> 1 (MPa)	<i>Ε_{Τ(90°)}*</i> 1 (MPa)	ν _{LT} (-)	<i>G_{LT}*</i> ² (MPa)
Non-calendered	139.48	268.08	0.1892	0.1131
Calendered	272.94	235.42	0.2952	0.8339

*1 Elastic modulus per width of 1mm

*2 G_{LT} is calculated from the following equation $\frac{1}{G_{LT}} = \frac{4}{E_{AE}} - \left(\frac{1}{E_L} + \frac{1}{E_T} - \frac{2\nu_{LT}}{E_L}\right)$

ASADA MESH

The coordinate of each point of the deformed pattern is simulated by FEM analysis using these values on the mesh.

Simulation results - Displacement

The non-calendered mesh is more deformed than the calendered one.

ASADA MESH

Summary of results

Quantitative analysis of the mechanical behavior of the non-calendered and calendered mesh samples revealed a significantly higher degree of deformation in the former. The calendering process can improve the mechanical uniformity of the as-woven mesh.

	Displacement (µm)		
	Non-calendered	Calendered	
Printing result	30.5	> 25.2	
Simulation	72.0	> 53.1	
	19		

ASADA /

- Introduction
- Experiment
- Simulation
- Conclusions

Conclusions

- 1. Based on the experiments, the calendered mesh shows less pattern deformation compared to the non-calendered one. This is because calendering aligns the warp and weft at the stress-strain curve.
- 2. The simulation demonstrates a similar trend to the experiment, but its magnitude is greater than that observed in the experiment.
- 3. To make a comparison with the results of other experimental conditions, further improvements are required for the simulation.

Thank you for your attention

