

Improvement of solder interconnections applied on back contact solar cells with low-T Cu paste busbars

Dominik Rudolph

Motivation: do we have enough silver?

• Current Ag consumption (PERC cell) is ~ 12-13 mg/Wp

11.05.2023

- World silver mining: 27,800 t/a in 2019 [3] (~24,000 t/a in 2020 and 2021)
- With todays technology 50% of world silver mining would allow for only 1 TWp/a PV production

[1] S. Henbest, M. Kimmel et al., "New Engergy Outlook (NEO) 2021", Bloomberg Finance L P., July 2021

```
[2] D. Bogdanov et al., "Low-cost renewable
electricity as the key driver of the global energy
transition towards sustainability", Energy,
Volume 227, 2021, 120467
[3] World Mining Data 2021, Volume 36
C. Reichl, M. Schatz, Vienna, 2021
```

-> Alternative metallization and metal quantity reduction strategies are required

Motivation: Copper as replacement material

• Copper is much cheaper and features similar conductivity

Raw material comparison:	Silver	Copper	Copper vs. Silver
Price per kg in US Dollar	818	8.9	~100x cheaper (12.04.23)
Conductivity in $10^{-8} \Omega m$ [4]	1.59	1.68	5% less conductive
Carbon footprint in kgCO ₂ /kg [5]	155	3.97	40x better
Max level in drinking water (EPA) in mg/liter [6]	0.1	1.0	10x less toxic
Abundance in Earth's crust in ppm	0.08	68	~1000x more abundant

[4]. W. M. Haynes, D. R. Lide, T. J. Bruno,, [Hrsg.]. CRC Handbook of Chemistry and Physics. Boca Raton, Florida : s.n., 2016-2017. S. 14-17. Bd. 97th edition.

[5]. R. Schindler, N. Schmalbein, V. Steltenkamp, J. Cave, B. Wens, A. Anhalt,. SMART TRASH: Study on RFID tags and the recycling industry. 1776 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 : Rand Corporation, 2012.

[6]. https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals. [Online]

Screen printed Cu

- IBC ideal for Cu screen printing
- Technology well-known from PCB
- 100% compatible with standard PV equipment
- Curing fast and at low temperature
 - Standard drying
 - "Snap curing" (300°C, few seconds with direct solidto-solid heat transfer)

How to avoid direct contact with Si?

Ag replacement routes for ZEBRA IBC cells

Route 1: soldering optimization & module results

ZEBRA with Cu BBs

11th edition of the Metallization and Interconnection Workshop for Crystalline Solar Cells (MIW)

Previous results

- High throughput process capability > Screen printing & short drying/curing
- No contamination of the cell
- Series resistance
- Long time durability and reliability > Climate chamber tests
- Solderability
- Adhesion

>pFF & Climate chamber tests Line resistance & FF > Stringer > Peel force

[8] D. Rudolph et al., "Screen printable, non-fire-through copper paste applied as busbar metallization for back contact solar cells", 10th Metallization and Interconnection Workshop for Crystalline Solar Cells, 2022

Soldering optimization

- Initial optimization by manual soldering
 - A combination of higher soldering temperature and hot plate temperature improves the adhesion

- Further optimization using automatic stringing
 - Best recipe 6 results in peel force values between 0.6 and 0.9 N/mm
 - → Stable interconnection of Cu busbars by soldering, obtained using stringer with adjusted settings.

Module fabrication: Comparing encapsulation methods

Group	1	2	3	4			
Cell type	ZEBRA M6 with 6 busbars						
Busbar paste	Reference Ag	Cu A	Cu B	Cu A			
Soldering process	Automatic soldering at Teamtechnik stringer using recipe 6 Ribbon: SnPb 60/40 1 x 0.24 mm² Cross connectors: SnPb 60/40 6 mm x 0.3 mm						
Module BOM	Glass - POE – transparent backsheet	Glass - POE – transparent backsheet	Glass - POE – transparent backsheet	Glass - EVA – transparent backsheet			

- POE: PolyOlefin Encapsulant
- EVA: Ethylene Vinyl Acetate Encapsulant

Module I–V results

- Module results
 before climate
 chamber tests
 are comparable
- Slightly lower FF for group 3

11th edition of the Metallization and Interconnection Workshop for Crystalline Solar Cells (MIW)

Climate chamber results Damp Heat (DH): J_{SC} and V_{OC}

- Stable J_{sc} until DH 3000 for all groups
- V_{oc} stable until DH 2000 for all groups and until DH 3000 for group 4
- Break down in V_{oc} for groups 1, 2 and 3 during DH 3000

→ Highest stability obtained with glass-EVA-backsheet BOM

Climate chamber results DH: pFF, FF and P_{mpp}

- No degradation in **pFF** until **DH 3000**
- Break down in FF and P_{mpp} at DH 3000 for group 1 to 3
- Group 4 stable in FF and P_{mpp} until DH 3000 → 3 x IEC DH for soldered Cu busbars with EVA encapsulation and backsheet

Climate chamber results DH: EL fault detection

Module defect is only visible for POE encapsulated groups 1-3 after DH3000

 \rightarrow Contact between BB and fingers

Climate chamber results: Thermal Cycling (TC)

- All modules remain stable until TC600
- No degradation of the contact \rightarrow Soldering connection is no issue

Climate chamber results TC: EL fault detection

- No severe issues visible in EL images
- More finger interruptions visible for Cu paste groups
 - Thermal stress between silver finger and Cu busbar?

Outlook on route 2: Cu finger and BB metallization

For Cu cells

- Comparable V_{OC} , pFF and cell efficiency η
- Lower J_{sc} of 0.1 mA/cm²
- Better FF of 0.3 $\%_{\rm abs}$ but not statistically significant

Paste	Data type	V_{oc} (mV)	$J_{sc} (mA/cm^2)$	FF(%)	η (%)
Ag	Best cell	687.2	41.92	80.32	23.14
	Avg. of 34 cells	688.9 ± 1.2	41.85 ± 0.05	79.54 ± 0.36	22.94 ± 0.11
Cu	Best cell	690.2	41.80	80.56	23.25
	Avg. of 34 cells	689.6 ± 0.9	41.75 ± 0.06	$79.81 {\pm} 0.41$	22.98 ± 0.13

[9] N. Chen, et al., "Thermal stable high efficiency copper screen printed back contact" solar cells, Solar RRL, 2022

Conclusion

- Stable interconnection of Cu busbars by soldering
- Cu BB modules with EVA+backsheet passed 3 x IEC
 DH and TC
- Comparable result for Ag BB modules and Cu BB modules encapsulated in POE + backsheet: pass 2 X IEC DH)
- V_{oc} and pFF are not degrading for the Cu BB modules → Cu indiffusion is no issue

All requirements fulfilled

- High throughput process capability \geq Screen printing & short drying/curing
- No contamination of the cell
- Series resistance
- Long time durability and reliability > Climate chamber tests
- Solderability
- Adhesion

- >pFF & Climate chamber tests
- Line resistance & FF
- - > Stringer
 - > Peel force

© ISC Konstanz e.V. 11th Metallization and Interconnection Workshop 2023

Acknowledgement:

This work is supported by the German Federal Ministry for Economic Affairs and Energy (BMWi) as part of the FlexFab 2 project with funding reference numbers **03EE1081B**.

Thank you for your attention

Bundesministerium für Wirtschaft und Energie