

Progress on the Reduction of Silver Consumption in Metallization of SHJ Solar Cells

S. Pingel¹, T. Wenzel¹, N, Göttlicher¹, M. Linse¹,
L. Folcarelli¹, J. Schube¹, S. Hoffmann¹, S. Tepner^{1,2},
Y. C. Lau^{3,4}, A. Lorenz¹, F. Clement¹

¹Fraunhofer ISE ²now with ASYS-Group ³Swansea University ⁴ASADA MESH CO., LTD.

Metallization and Interconnection Workshop 2023 08.05.2023, Neuchâtel, Switzerland

Motivation and Approach

Enable SHJ Mass Production by Reducing the Consumption of Scarce Materials

Motivation

- Scarce materials in SHJ production^{1,2}: Ag, In, Bi ...
- Reduce Ag consumption² \rightarrow target 2 mg/W
- SHJ with high Ag consumption vs. PERC

Motivation and Approach

Enable SHJ Mass Production by Reducing the Consumption of Scarce Materials

Motivation

- Scarce materials in SHJ production^{1,2}: Ag, In, Bi ...
- Reduce Ag consumption² → target 2 mg/W
- SHJ with high Ag consumption vs. PERC
- SHJ low tolerable thermal budget (few min @ 200°C)
 → Low-temperature Paste (LTP)
- Industrial standard SHJ metallization: screen printing (SP), at ISE fast inline curing 220°C 1 min³

Graph taken from ⁴

FHG-SK: PUBLIC

⁷M. Pospischil, 2023, this workshop

⁶K. Gensowski, 2022, https://doi.org/10.1016/j.solmat.2022.11187

⁸K. Nakamura, 2020, <u>https://doi.org/10.4229/35thEUPVSEC20182018-2AV.3.37</u>

Motivation and Approach

Enable SHJ Mass Production by Reducing the Consumption of Scarce Materials

Motivation

- Scarce materials in SHJ production^{1,2}: Ag, In, Bi ...
- Reduce Ag consumption² → target 2 mg/W
- SHJ with high Ag consumption vs. PERC
- SHJ low tolerable thermal budget (few min @ 200°C)
 → Low-temperature Paste (LTP)
- Industrial standard SHJ metallization: screen printing (SP), at ISE fast inline curing 220°C 1 min³

Approaches with lower Ag consumption

1. Fine-line SP

Alternatives: Rotary SP⁴, FlexTrail⁵ and Dispensing^{6,7}

2. Reduce Ag content in LTP

Ref LTP Ag ~92% \rightarrow Ag-coated Cu particles⁸

3. Avoid Ag "completely"

Cu-LTP⁹/-Plating¹⁰ (challenges: oxidation, contamination)

(a) Ag 100%

⁷M. Pospischil, 2023, this workshop

(b) Ag/Ag coated Cu=37%/63%

AgCu SEM taken from ⁸

 *E. Gervais, EPJ PV, 2021, https://doi.org/10.1051/epjpv/2021005

 *Y. Zhang, EES 2021, https://doi.org/10.1039/D1EE01814K

 *B. Erath, MIW 2020, https://doi.org/10.1063/5.0056429

 *A. Lorenz, 2022, https://doi.org/10.1002/ente.202200377

 *J. Schube, 2022, https://doi.org/10.1002/ente.202200702

FHG-SK: PUBLIC

⁶K. Gensowski, 2022, https://doi.org/10.1016/i.solmat.2022.11187

Reduce silver consumption by application of fine-line screen printing

Process Flow

*ASADA wires:

SHS: super high strength UHS: ultra high strength SHS-T: tungsten type

Base	n-type SHJ precursors (M2+)					
SP-RS	Ag LTP reference metallization Drying @ 200°C 1 min					
SP-FS	Ag LTP metallization with varied					
Mesh	380x14 380x11 520x11 520x11 520x11 520x11 520x11 430/460x13/11 22.5° 0° SHS-T* 22.5° SHS* 22.5° UHS* 30° SHS* 0° 430/460x13/11					
Screen	Opening range: w _n 10 – 60 μm					
Cure	Curing @ 220°C 1 min					
Char	Resistance measurement, 3D-microscopy $ ightarrow$ finger geometry analyzed with DASH ¹¹					

Slide 6

Ingredients for Fine-Line Printing

Screens

• Variation of mesh type (mesh count and wire diameter) and angle, shown for $w_N \sim 20 \mu m$

LT paste

Slide 7

• Fine-line compatibility, good printing characteristics

High quality printing process

© Fraunhofer ISE

Printing Forms to Test for Fine-Line Compatibility

- Layout with $n_F = 120$ fingers, pitch 1.3 mm
- Variation:
 - \blacksquare Four segments with **varied opening w_N**

Results for Line Conductance C_{LINE} and Shading Width w_f

- Measurement of grid resistance with cell tester
 - $R_{grid} \rightarrow Line Resistance \mathbf{R}_{LINE} = R_{grid} \times n_F / d_{BB}$
 - Line Conductance $C_{LINE} = R_{LINE}^{-1}$
- Wide range covered (C_{LINE}~3 orders of magnitude)

Parameter	Units	min	max
C _{LINE}	[Ω⁻¹cm]	0.004	1.6
R _{LINE}	$[\Omega cm^{-1}]$	0.63	272
W _f	[µm]	13	71

Results for Line Conductance $\mathsf{C}_{\mathsf{LINE}}$ and Shading Width w_{f}

Parameter	Units	min	max
C _{LINE}	[Ω ⁻¹ cm]	0.004	1.6
R _{LINE}	$[\Omega cm^{-1}]$	0.63	272
W _f	[µm]	13	71

Excellent fine-line results for Ag LTP

--- Shading width: 17.37 μm

— Shading width: 12.95 μm

Are these fingers suitable for a given module layout?

Slide 11

Cell- / Module-Layout Compatibility of the Printed Fingers

GridMaster¹² simulation

- M6 wafer half-cut cell (precursor $\eta_{\text{pot}}^* \sim 24\%$)
- Fix number of grid fingers FS: 63, RS: 126
- 9 MBB Layout: effective wire shading 70%¹³
- Simulation of string-level designated area η
- Variation of:
 - Finger width w_f (1-70µm)
 - Line Conductance C_{LINE} (up to 2 cm/Ω)
- For $w_f < 10 \ \mu m$ contact resistivity $\rho_{metal,TCO}$ more relevant (simulation with $\rho = 1.0 \ m\Omega cm^2$)

 * η_{pot} : w/o metal shading and metal resistive losses

Cell- / Module-Layout Compatibility of the Printed Fingers

Data of test form fingers:

- Different types of mesh, screen openings w_N and printing settings (e.g. print speed)
- Most promising fingers for a given cell / module layout can be easily identified.

9MBB M6 HC

Cell- / Module-Layout Compatibility of the Printed Fingers

Data of test form fingers:

- Different types of mesh, screen openings w_N and printing settings (e.g. print speed)
- Most promising fingers for a given cell / module layout can be easily identified.
- For finer lines: reduced cross-section A_f and laydown

9MBB M6 HC

Cell- / Module-Layout Compatibility of the Printed Fingers

Data of test form fingers:

- Different types of mesh, screen openings w_N and printing settings (e.g. print speed)
- Most promising fingers for a given cell / module layout can be easily identified.
- For finer lines: reduced cross-section A_f and laydown

9MBB M6 HC

Cell- / Module-Layout Compatibility of the Printed Fingers

Data of test form fingers:

- Different types of mesh, screen openings w_N and printing settings (e.g. print speed)
- Most promising fingers for a given cell / module layout can be easily identified.
- For finer lines: reduced cross-section A_f and laydown
- Here $\eta_{string \ level}$ > 22.5% expected for best fingers in the range w_f ~27 37 μm

9MBB M6 HC

Cell- / Module-Layout Compatibility of the Printed Fingers

Data of test form fingers:

- Different types of mesh, screen openings w_N and printing settings (e.g. print speed)
- Most promising fingers for a given cell / module layout can be easily identified.
- For finer lines: reduced cross-section A_f and laydown
- Here $\eta_{string \, level}$ > 22.5% expected for best fingers in the range w_f ~27 37 μm

Impact of the screen type ASADA vs. reference:

- Here all fingers printed with 300 mm/s
- Highest non-0° performant finger with low Ag laydown 520x11x22.5° UHS mesh

9MBB M6 HC

Cell- / Module-Layout Compatibility of the Printed Fingers

Data of test form fingers:

- Different types of mesh, screen openings w_N and printing settings (e.g. print speed)
- Most promising fingers for a given cell / module layout can be easily identified.
- For finer lines: reduced cross-section A_f and laydown
- Here $\eta_{string \, level}$ > 22.5% expected for best fingers in the range w_f ~27 37 μm

Impact of the screen type ASADA vs. reference:

- Here all fingers printed with 300 mm/s
- Highest non-0° performant finger with low Ag laydown 520x11x22.5° UHS mesh

9MBB M6 HC

Cell- / Module-Layout Compatibility of the Printed Fingers

Impact of the screen type ASADA vs. reference:

- Here all fingers printed with 300 mm/s
- Highest non-0° performant finger with low Ag laydown 520x11x22.5° UHS mesh
- Average data for fingers with A_f < 300µm²

Mesh	R _{LINE}	w _f	A _f	η _{GM}
	[Ω/cm]	[µm]	[µm²]	in %
380x14x22.5	5.6	33	166	22.46
520x11x22.5-UHS	5.1	29	140	22.54
Rel. Deviation	-8%	-11%	-15%	+0.36%

- Laydown* reduced by 15%
- Shading reduced by 10%
 R_{LINE} reduced by 8 %

n**⊅ 0.08%**_{abs}

9MBB M6 HC

*scales with A_f

Finer mesh enables printing of narrow high-quality fingers.

Can the fine-line fingers be module compatible?

Which Cell- /Module-Design is Suitable for Finest Lines

M6 HC pitch_{FS} = 1.32mm pitch_{RS} = 0.66mm

Scale x: w_f 10 - 50 μm

Which Cell- /Module-Design is Suitable for Finest Lines

 $\begin{array}{l} \mbox{M6 HC} \\ \mbox{pitch}_{\rm FS} = 1.32\mbox{mm} \\ \mbox{pitch}_{\rm RS} = 0.66\mbox{mm} \end{array}$

© Fraunhofer ISE

Which Cell- /Module-Design is Suitable for Finest Lines

M6 HC $pitch_{FS} = 1.32mm$

Scale y: C_{LINE} 0 - 1 cm/ Ω © Fraunhofer ISE

Scale x: w_f 10 - 50 µm

Which Cell- /Module-Design is Suitable for Finest Lines

M6 HC $pitch_{FS} = 1.32mm$

Scale y: C_{LINE} 0 - 1 cm/ Ω © Fraunhofer ISE

Scale x: w_f 10 - 50 µm

Simulation Impact of FS Finger Pitch

- Selection of best fine-line fingers for η_{max}
- All printed with fine mesh and knotless screens

Module	5 wires	9 wires	18 wires	
LEXT				
$R_{LINE}\left[\Omega/cm ight]$	2.0	4.0	13.1	
w _f [µm]	34.2	28.3	17.4	
A _f [µm²]	243	149	47	

Slide 25

Simulation Impact of FS Finger Pitch

• 9 and 18 wires superior in η compared to 5 wires

	meth angle No! 22.2% 0 0° 22.3% 0° 22.6% 22.4% 0° 0° 22.6% 0° 0° 0° 0° 1 0° 0° 0° 0° 0° 1 0° 0° 0° 0° 0° 0° 1 0°	meeh ange o 22.8% Partially 22.49 22.8% 22.6% 0 22.8% 0 0 30° 22.6% 0 1000000000000000000000000000000000000	mesh argle Yes! 22.4% • 22.5% 22.6% • • 22.8% • • • 22.8% • • • 22.8% • • • 22.8% • • • 22.8% • • • 22.8% • • • 22.8% • • • 22.8% • • • 22.8% • • • 22.8% • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0 • • • 0
Module	5 wires	9 wires	18 wires
LEXT			and the second
$R_{LINE} [\Omega/cm]$	2.0	4.0	13.1
w _f [µm]	34.2	28.3	17.4

149

47

18 wires (250)

 $A_f [\mu m^2]$

243

Simulation Impact of FS Finger Pitch

Simulations show: Small module wire pitch allows

- Narrow lines and

Small finger cross-section area
at high efficiency level.
But what happens in real modules?

Samples for Module Integration

- Module platform: SWCT with 18 wires (Ø 250 μm)
 - Tolerant µ-cracks, TC-testing, mech. load, ...
 - Manual mini-module integration of test forms (TF) samples (5 groups, 2 per group)
- Basis: M2+ SHJ precursor post PVD $\eta_{pot} \sim 24\%$
- Full M2+ test form cells (FC)

• Simulation M2+ **HC** \rightarrow **FC**: η -drop ~0.45%_{abs}

M2+FCTF

M2+ FC TF pitch_{FS} = 1.32mm pitch_{RS} = 0.66mm

- Reasonable η of 21% (sim. 22.1% active area) for ~ 8 mg LTP FS-laydown and w_f 20-24 μ m
- FC + additional R_s in module / cell periphery
 → low module FF: ~72.5%

Group	1	2	3	4	5
FS Laydown	6.7 mg	7.2 mg	8.3 mg	22.0 mg	30.1 mg
η_{STC}	19.4%	20.3%	20.9%	21.3%	21.3%
EL					W _f A
η _{stc}	19.4%	20.4%	21.0%	21.4%	21.3%

Module size: 28 x 25 x 0.3 cm³, float glass (no AR) + white backsheet η active cell area 246 cm², IV not masked, module R_s losses included

- Reasonable η of 21% (sim. 22.1% active area)
 for ~ 8 mg LTP FS-laydown and w_f 20-24 μm
- FC + additional R_s in module / cell periphery \rightarrow low module FF: ~72.5%

SWCT Module Results

Group	1	2	3	4	5
FS Laydown	6.7 mg	7.2 mg	8.3 mg	22.0 mg	30.1 mg
η_{STC}	19.4%	20.3%	20.9%	21.3%	21.3%
EL					W _f 7
η _{stc}	19.4%	20.4%	21.0%	21.4%	21.3%

Module size: 28 x 25 x 0.3 cm³, float glass (no AR) + white backsheet η active cell area 246 cm², IV not masked, module R_s losses included

Summary

Progress on the Reduction of Silver Consumption in Metallization of SHJ Solar Cells

- High Ag paste consumption for SHJ (~ 15-35 mg/W) Target: long-term 2 mg/W (mid: 15 mg/W)²
- Finer ASADA mesh (380x14 \rightarrow 520x11) with uniform printing \rightarrow reduction in R_{LINE} and shading $\rightarrow \eta^* 7 0.08\%_{abs}$ laydown $\searrow 15\%$
- Cell / module layout (# wires) VIP to reduce Ag
 Sim.: η*>22.6% with FS 3.9 (#9) / 1.5 mg/W (#18)
- "Fine-line test-form cells" in SWCT mini modules $\eta^{**} = 21.0\% \rightarrow FS: 1.6 \text{ mg/W}$ $\eta^{**} = 21.4\% \rightarrow FS: 4.2 \text{ mg/W}$
- Mid-term Ag-targets clearly passed with advanced mesh, screens, paste and module

²Y. Zhang, EES 2021, <u>https://doi.org/10.1039/D1EE01814K</u>

* η string level, da ** η active module area

Outlook

Optimization of fine-line printing for mass-production

- Lower FS + RS Ag-laydown
 - Fine-line Ag LTP
 - AgCu LTP as a promising, already industry proven approach. Here fine-line printability was already investigated¹⁴, further tests are planned
 - Cu-LTP, apply TOPCon learnings⁹, enable screen printed Ag-free SHJ

Improve η_{module}

- Integration of large wafer HC
- Application of automated stringing
- Long-term reliability testing

⁹D. Ourinson, 2023, this workshop

Outlook

Slide 34

Fine-line AgCu-LTP finger

Test form printed with Cu-LTP

Thank You for Your Attention!

Thanks to ASADA MESH for providing material for testing