Paste-based Silver Reduction for iTOPCon Rear Side Metallization

Fraunhofer Institute for Solar **Energy Systems ISE**

D. Ourinson¹, A. Brand¹, A. Lorenz¹, M. Dhamrin^{2,3}, S. Tepner¹, M. Linse¹, N. Göttlicher¹, R. Haberstroh¹, K. Tsuji², J. Huyeng¹, F. Clement¹

- ¹ Fraunhofer ISE, Heidenhofstraße 2, 79110 Freiburg, Germany
- ² Toyo Aluminium K.K., 341-14 Higashiyama, Ohtani, Hino-Cho, Gamo-Gun, Shiga 529-1608, Japan

³ Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan

Motivation and Aim

- Rapid increase in PV market share of iTOPCon solar cells
- Conventional iTOPCon metallization by Ag pastes on both sides
- Expected global Ag supply shortage within the next ten years + Ag expensive
- → Goal of Ag reduction for iTOPCon solar cells
- This work: Reduction of rear side Ag via paste-based approaches

Conclusions

- "Rear Cu" approach: Ag reduction by 3/4 on rear side and by 1/2 in total \rightarrow Similar η to conv. Ag grid \rightarrow no detectable Cu oxidation or in-diffusion \rightarrow Only two additional simple steps: screen printing + drying/curing of Cu
- "**Rear AI**" approach: no Ag on rear side, Ag reduction by 2/3 in total \rightarrow 0.9%_{abs} η gap to conv. Ag grid in first attempt \rightarrow future optimizations \rightarrow No p⁺ layer or SiO₂ penetration by Al paste, no poly-Si damage by LCO

Experimental

thermal influence by plating

iTOPCon cross-sections and corresponding rough process flows

Results

I-V results: comparison of "Rear Cu" and "Real Al" to "Rear Ag"										
Best Solar Cell	η (%)	<i>V</i> _{oc} (mV)	j _{sc} (mA/cm²)	FF (%)	<i>r</i> s (Ωcm²					
" Rear Cu " (front AgAl), prec. A	22.95	701	40.8	80.2	0.61					

Microscopy images of iTOPCon rear side

SEM images of iTOPCon rear side

"Rear Ag" (front AgAl), prec. A 22.95 699 80.7 0.52 40.7

" Rear Al " (front AgAl), prec. B	21.71	693	40.5	77.4	1.02	 Conventional firing Al conductivity but 	DrIng. Daniel Ourir
" Rear Ag " (front AgAl), prec. B	22.64	703	40.6	79.3	0.61	poly-Si damage	daniel.ourinson@ise
" Rear Al " (front plating), prec. B	21.82	685	40.2	79.2	0.72	 Adapted burnout, peak and time 	Fraunhofer ISE Heidenhofstr. <u>2, 79</u> 1
" Rear Ag " (front plating), prec. B	22.75	694	40.4	81.1	0.39	No improvement achieved yet	www.fraunhofer.de

ng. Daniel Ourinson el.ourinson@ise.fraunhofer.de nhofer ISE lenhofstr. 2, 79110 Freiburg

Chen et al., "Thermal Stable High-Efficiency Copper Screen Printed Back Contact Solar Cells", Solar RRL, 2022 2 Suzuki et al., "Screen-printed aluminum contacts on n⁺-doped silicon", EUPVSEC, 2020

Fraunhofer ISE would like to thank all co-workers involved in this contribution, and PrintCB for providing the copper paste.

