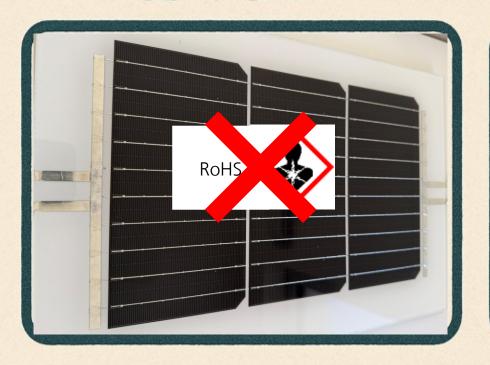


RoHS-Compliant Interconnection of TOPCon Solar Cells

<u>Derya Güldali</u>, Angela De Rose, Max Mittag, Benjamin Grübel, Holger Neuhaus, Ulrich Tetzlaff

October 20th 2025, Berlin
13th Metallization and Interconnection Workshop

FIND THE DIFFERENCE 99% CAN'T FIND THE DIFFERENCE



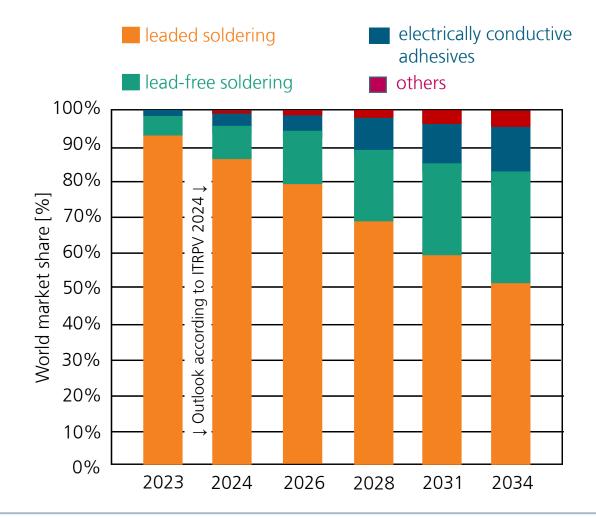
NEW GAME COMING SOON

FIND THE DIFFERENCE

99% CAN'T FIND THE DIFFERENCE

NEW GAME COMING SOON

State of the Art


Interconnection technologies in PV modules

Standard: Busbar interconnection

- Currently soldering with Sn60Pb40 coated ribbons [1]
- Alternative lead-free (Pb-free) technologies
 - Lead-free soldering
 - Lead-free glueing
 - Others (e.g., taping, back contact-related solutions)

Pb – isn't its use restricted by European regulations? So why are we still using it?

Why do we still use Pb-containing solders?

The problem with lead (Pb)

RoHS = Restriction of Hazardous Substances [1]

- EU directive since 2006
- Appendix II: Restricted substances accord. Article 4(1) with max. concentration in homogenous materials in weight percent (%_{wt})
 - Lead (0.1%)

This text is meant purely as a documentation tool and has no legal effect. The Union's institutions do not assume any liability for its contents. The authority versions of the relevant acts, including their preambles, are those published in the Official Journal of the European Union and available in EUR-Lex. These official texts are directly accessible through the links embedded in this document

▶B DIRECTIVE 2011/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 8 June 2011

on the restriction of the use of certain hazardous substances in electrical and electronic equipment

(recast

(Text with EEA relevance)

(OJ L 174, 1.7.2011, p. 88)

Amended by:

Official Journal

02011L0065 -- EN -- 15.07.2016 -- 005.002 -- 1

*MI. Commission Delevated Directive 2012/50/EU of 10 October 2012. L. 348. 16. 18.12.2012

M2 Commiss 02011L0065 — EN — 15.07.2016 — 005.002 — 20

► M3 Commist

ANNEX II

Restricted substances referred to in Article 4(1) and maximum concentration values tolerated by weight in homogeneous materials

Lead (0,1 %)

Mercury (0,1 %)

Cadminm (0,01 %)

Hexavalent chromium (0,1 %)

Polybrominated biphenyls (PBB) (0,1 %)

Polybrominated diphenyl ethers (PBDE) (0.1 %)

Why do we still use Pb-containing solders?

The problem with lead (Pb)

RoHS = Restriction of Hazardous Substances [1]

- EU directive since 2006
- Appendix II: Restricted substances accord. Article 4(1) with max. concentration in homogenous materials in weight percent (%_{wt.})
 - Lead (0.1%)
 - •
- → (4) This directive does not apply to: (i) photovoltaic modules intended to be used in a system designed,...

- This Directive does not apply to:
- (a) equipment which is necessary for the protection of the essential interests of the security of Member States, including arms, munitions and war material intended for specifically military purposes;
- (b) equipment designed to be sent into space;
- (c) equipment which is specifically designed, and is to be installed, as part of another type of equipment that is excluded or does not fall within the scope of this Directive, which can fulfil its function only if it is part of that equipment, and which can be replaced only by the same specifically designed equipment;
- (d) large-scale stationary industrial tools;
- (e) large-scale fixed installations;
- (i) photovoltaic panels intended to be used in a system that is designed, assembled and installed by professionals for permanent use at a defined location to produce energy from solar light for public, commercial, industrial and residential applications;
- (h) (j) equipment specifically designed solely for the purposes of research and development only made available on a business-to-business basis

RoHS - Directive

The problem with lead (Pb)

Calculation

- 13.4 g Pb (for Sn60Pb40) inside one PV module
- ~30 kg module weight
- \Rightarrow 0.0134 kg / 30 kg \approx 0.04 %_{wt.} < 0.1 %_{wt.}

RoHS - Directive

The problem with lead (Pb)

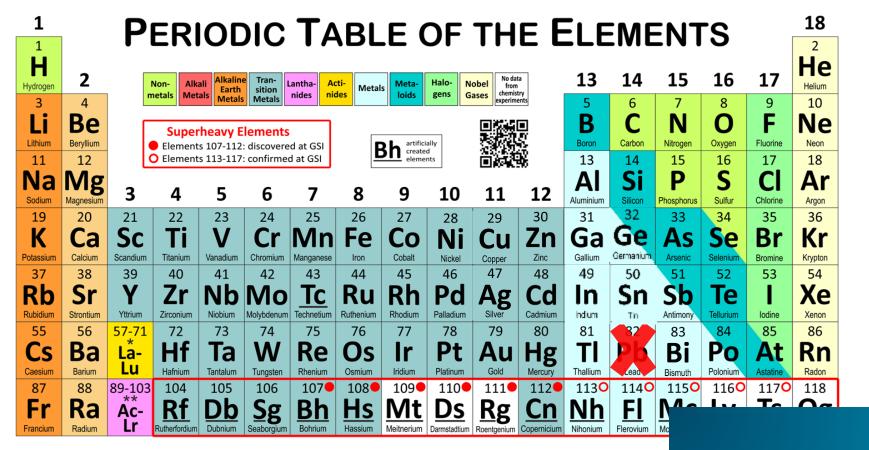
Is a PV module a homogenous material? [1]

- No, BUT:
 - Solder alloy = homogeneous material
 - Metallization = homogeneous material
 - . . .
- Therefore: The max. concentration of 0.1 %_{wt.} refers to the solder alloy itself

Calculation

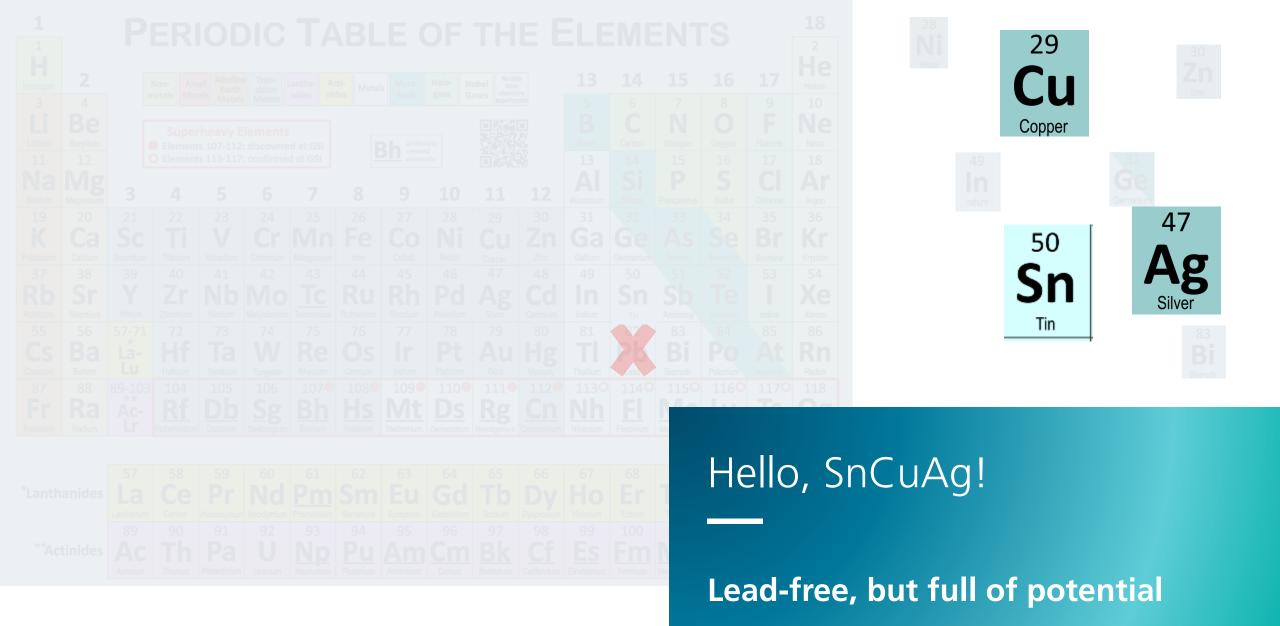
- 13.4 g Pb (for Sn60Pb40) inside one PV module
- ~30 kg module weight
- \Rightarrow 0.0134 kg / 30 kg \approx 0.04 %_{wt.} < 0.1 %_{wt.}

Correct calculation


34 g solder alloy inside one PV module

 \Rightarrow 13.4 g / 34 g \approx 40 %_{wt.} \gg 0.1 %_{wt.}

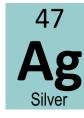
→ Current RoHS exemption is under revision – Pb content exceed 0.1 %_{wt.} limit
 → Developing Pb-free solutions to stay prepared for future requirements.

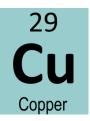


Eu Er Nd Pm Sm Gd Tb Ho *Lanthanides Ce Dv Erbium 99 100 **Es** Fm N **Actinides <u>Np</u> Bk

Goodbye, Lead!

But what's next?



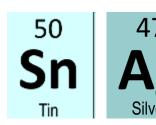


Tin-Silver-Copper Solder

Pb-free alloys in electronics & research gaps for PV

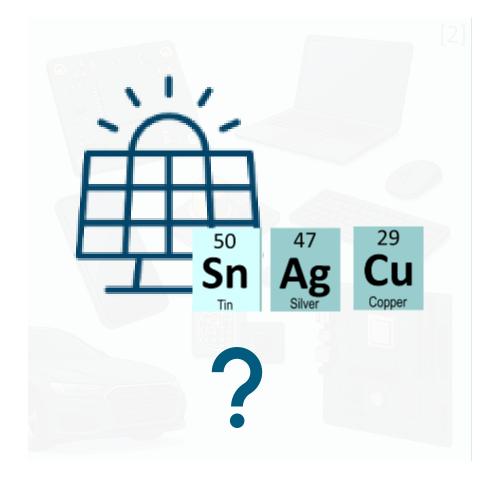
50 **Sn**

Short Profile of SnAgCu (SAC) alloys:


- Typically used composition SAC305:
 - Sn96.5Ag3.0Cu0.5 ($\%_{\text{wt.}}$) $T_{\text{m. SAC305}} = 217-219 \, ^{\circ}\text{C}^{[1]}$
- Widely used in electronic industry
 - Replacement of SnPb alloys after restrictions
- Sufficient mechanical, electrical and long-term reliability properties^[3-6]
 - Good wetting and solderability on Cu surfaces
 - High thermal fatigue resistance and mechanical stability under cyclic loading

Tin-Silver-Copper Solder

Pb-free alloys in electronics & research gaps for PV



Short Profile of SnAgCu (SAC) alloys:

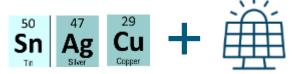
- Typically used composition SAC305:
 - Sn96.5Ag3.0Cu0.5 ($\%_{\text{wt.}}$) $T_{\text{m. SAC305}}$ = 217-219 °C [1]
- Widely used in electronic industry
 - Replacement of SnPb alloys after restrictions
- Sufficient mechanical, electrical and long-term reliability properties^[3-6]
 - Good wetting and solderability on Cu surfaces
 - High thermal fatigue resistance and mechanical stability under cyclic loading

Previous PV-related SAC studies are limited – mostly outdated and not focused on feasibility and current technologies

12

public

^[1] H. Baker, ASM Handbook, 1992.


^[2] Image created using AI tools

^[3] B. Szyszka et al., Curr Appl Phys, vol. 12, pp. 2–11, 2012, doi: 10.1016/j.cap.2012.07.022.

^[4] A. Arazna et al., in IEEE 8th ESTC, pp. 1-6, 2020.

SAC in PV modules

Research question & experimental approach

Can SAC305 provide <u>reliable</u> interconnections while remaining <u>compatible</u> with standard industrial processes despite its higher melting point?

Experimental approach:

- Mechanical evaluation of strings
 - Wetting behavior using 90° peel test^[1]
- Electrical characterization of PV modules
 - I-V measurements^[2]
- Long-term reliability of PV modules
 - Thermal cycling & Damp heat tests^[3]

Variation of IR lamps set temperature:

T _{ref, SnPb} 190 °C / 220 °C			
300.96 / 330.96	T _{ref, SnPb}	190 °C / 220 °C	
Medium 200 °C / 230 °C	T_{Medium}	200 °C / 230 °C	
T _{High} 210 °C / 240 °C	T_{High}	210 °C / 240 °C	

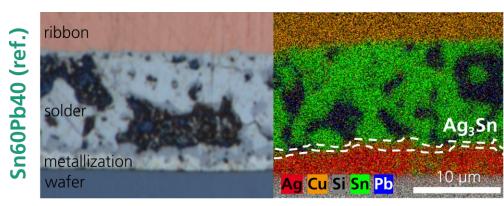
Materials:

- Cell technology: TOPCon, M10, hc, bifacial, 10BB
- Solder of ribbons (Cu core + solder):
 - Reference (Sn60Pb40)
 - SAC305

^[2] IEC 60904-3, Photovoltaic devices: Part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data, in: IEC 60904-3:2019, 20 [3] Terrestrial Photovoltaic (PV) Modules – Design Qualification and Type Approval – Part 2: Test Procedures, IEC 61215-2:2016, 2016.

^[1] Solarzellen - Datenblattangaben und Angaben zum Produkt für kristalline Silicium-Solarzellen (DIN EN 50461:2007-03), 2007.

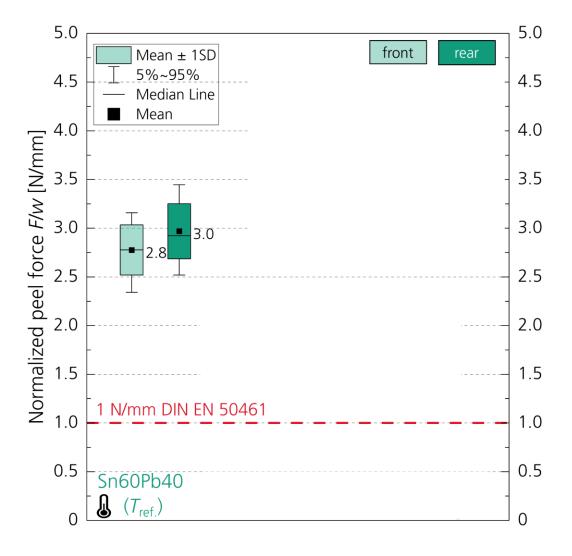
First Quality Check after Stringing Process


Microstructure of the solder joint on TOPCon metallization

Required diffusion zones between solder and busbar

- An indicator of successful wetting and optimal electrical contact
- Formation of intermetallic phase consisting of Sn and Ag (Ag₃Sn) [1]

Cross-sections of solder joints on TOPcon solar cells

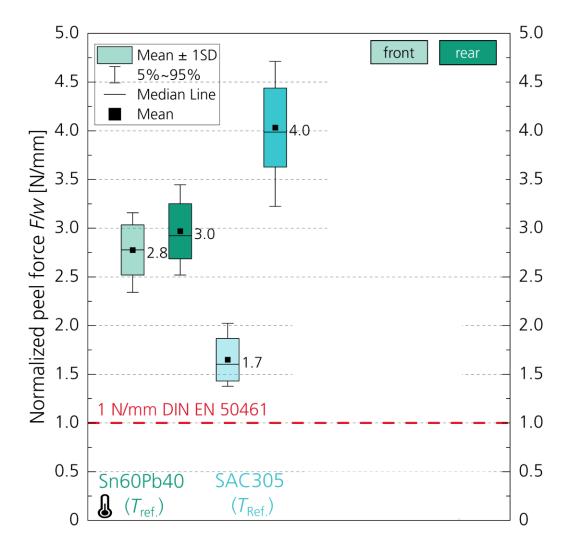

Digital microscope

EDX element mappings

mechanical adhesion of the ribbons?

Normalized peel forces should exceed 1 N/mm cirterion [1] for sufficient mechanical adhesion

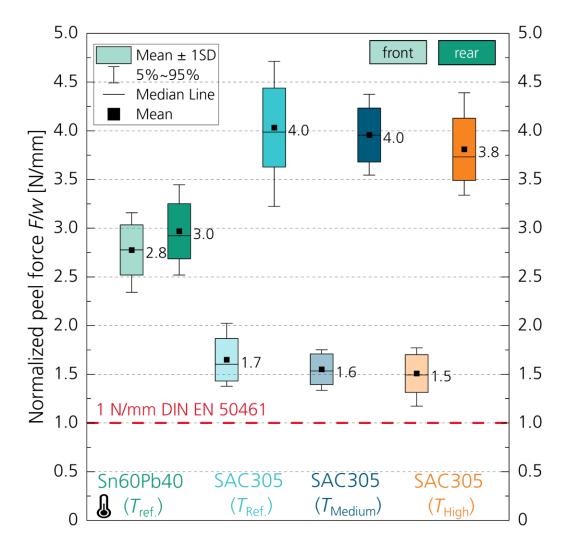
- Peel forces of reference solder are higher than 1 N/mm
- Differences front and rear are expected & normal


T_{Ref}: 190°C/220°C | T_{Medium}: 200°C/230°C | T_{High}: 210°C/240°C

16

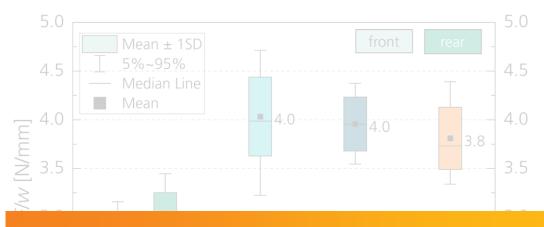
mechanical adhesion of the ribbons?

Normalized peel forces should exceed 1 N/mm cirterion [1] for sufficient mechanical adhesion


- Peel forces of reference solder are higher than 1 N/mm
- Differences front and rear are expected & normal
- Comparison of peel forces: SAC305 vs. Sn60Pb40
 - Peel forces of SAC ribbons > 1 N/mm
 - Peel forces on rear side of SAC ribbons are higher SnPb values
 - \rightarrow Standard process temperature ($T_{ref.}$) for SAC alloys exceed very good wetting

mechanical adhesion of the ribbons?

Normalized peel forces should exceed 1 N/mm cirterion [1] for sufficient mechanical adhesion


- Peel forces of reference solder are higher than 1 N/mm
- Differences front and rear are expected & normal
- Comparison of peel forces: SAC305 vs. Sn60Pb40
 - \rightarrow Standard process temperature ($T_{\text{ref.}}$) for SAC alloys shows very good wetting
- Impact of different process temperatures on wetting behavior of alloys SAC305
 - Higher melting point SAC is more noticeable on the front side

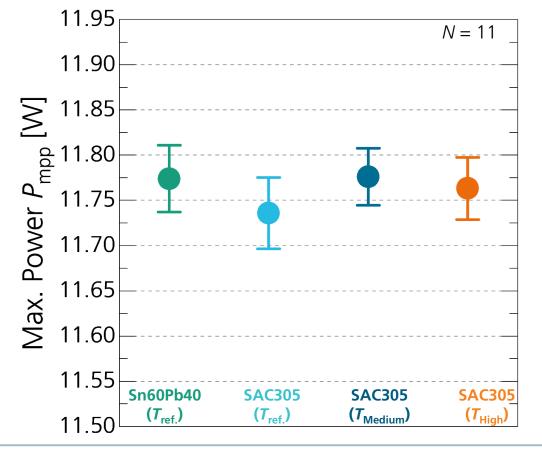
mechanical adhesion of the ribbons?

Normalized peel forces should exceed 1 N/mm cirterion [1] for sufficient mechanical adhesion

- Peel forces of reference solder are higher than 1 N/mm
- Differences front and rear are expected & normal
- Comparison of peel forces: SAC305 vs. Sn60Pb40
 - \rightarrow Standard process temperature ($T_{\text{ref.}}$) for SAC alloys shows very good wetting
- Impact of different process temperatures on wetting behavior of alloys SAC305
 - Higher melting point SAC is more noticeable on the front side

Adhesion of Pb/Bi-free solder on TOPCon comparable to reference and in part better than reference solder

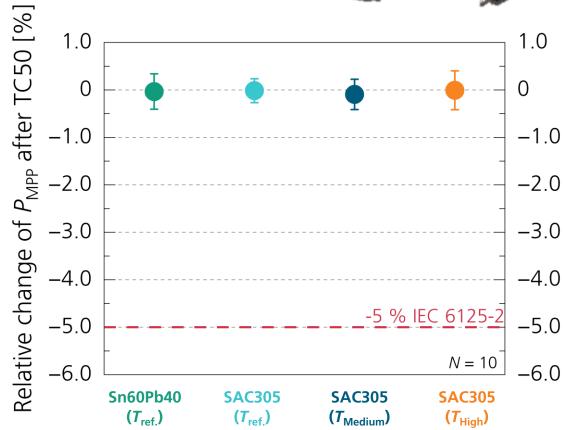
19


Module Integration

Module performance initial

Initial /-V performance:

- Data confirms functional operation of all modules
- Fill factor *FF* stands out, as all module groups exhibit a high fill factor above 80 %, which is indicative of a good interconnection technique
- No significant differences observed between process temperatures and solder alloys


Module Integration

Module performance after TC50

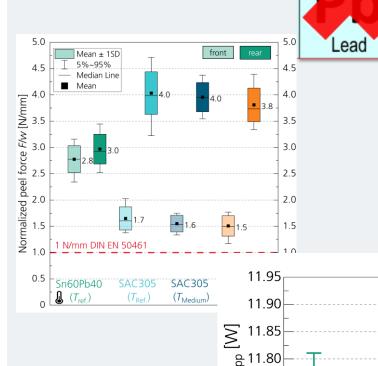
TC50 /-V performance:

- Data confirms functional operation of all modules after TC 50
- Parameter degradation TC50 < -1 %_{rel.}
- No unusual changes seen in EL images
- TC200 is still running

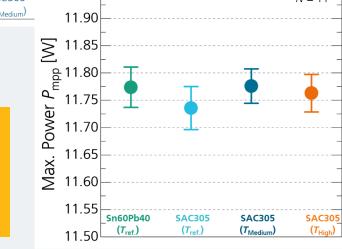
RoHS Readiness & Process Feasibility of SAC305

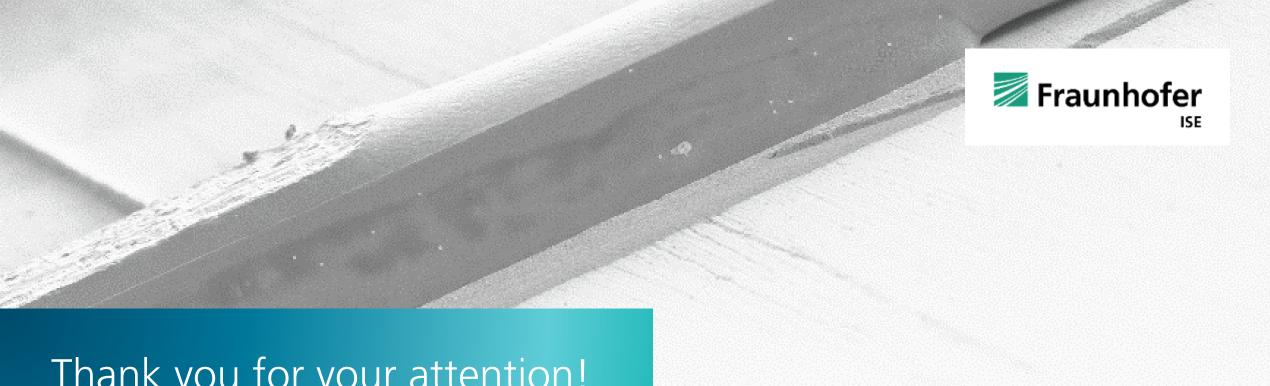
No Pb, No Bi, No Ag? What's next?

RoHS compliance will require complete phase-out of SnPb solder


- → Current SnPb-based modules exceed upcoming RoHS Pb limits
- → PV industry should be prepared for lead-free interconnection

SAC305 tested on fired Ag contacts of industrial TOPCon cells


- → Interconnection with industrial stringer and standard process successful
- \rightarrow Peel forces comparable or better than SnPb (1.5 4.0 N/mm)
- → Module integration successful: Fill factors > 80 %
- \rightarrow *I-V* data, Initial and TC50, show stable performance


SAC305 proves technically and process-wise suitable as a Pb-free alternative for TOPCon technology.

Yet, the question remains — when compliance becomes mandatory, will cost still be the deciding factor or will there be another choice?

Thank you for your attention!

Derya Güldali **Module Technology/Interconnection** Tel. +49 761 4588-2582 derya.gueldali@ise.fraunhofer.de

Visit our new Module Technology Evaluation Center:

Module-TEC - Fraunhofer ISE

Supported by:

This work has been funded by the Federal Ministry for Economic Affairs and Climate Action within the project "GreenSolarModules".

on the basis of a decision by the German Bundestag