
REDUCTION OF SILVER & INDIUM CONSUMPTION BY COPPER PLATING WITH A DIELECTRIC MASKING LAYER FOR SUSTAINABLE PRODUCTION OF HETEROJUNCTION CELLS

Agata Lachowicz¹, Jun Zhao¹, <u>Audrey Morisset¹</u>, Bertrand Paviet-Salomon¹, Lison Marthey¹, Alexis Barrou¹, Laurie-Lou Senaud¹, Adeline Lanterne², Johann Jourdan², Jörg Schube³, Roman Keding³, Sven Kluska³ and Christophe Ballif¹

¹ CSEM, Switzerland

² CEA INES, France

³ Fraunhofer ISE, Germany

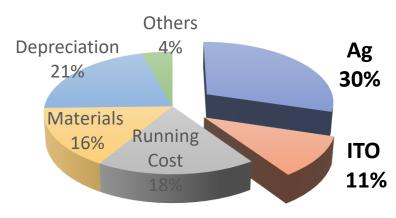
OUTLINES

PROCESS 3 steps

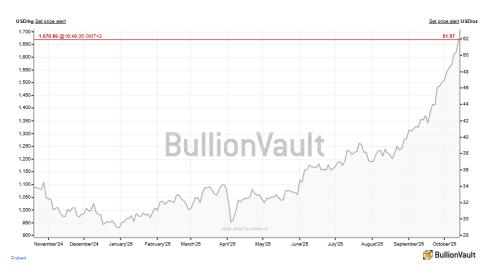
CELL RESULTS w. 50 & 30 nm ITO

DH STABILITY
 w. copper on 15 nm ITO

COST & MATERIALS comparison w. SP

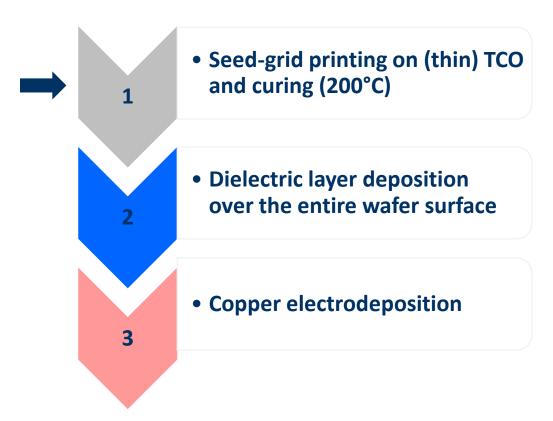

SEED GRID FORMATION BY FLEXTRAIL PRINTING

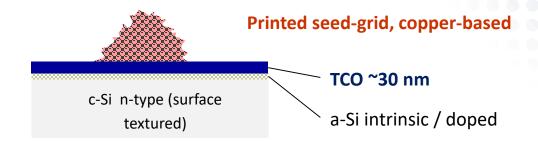
MATERIALS & COSTS

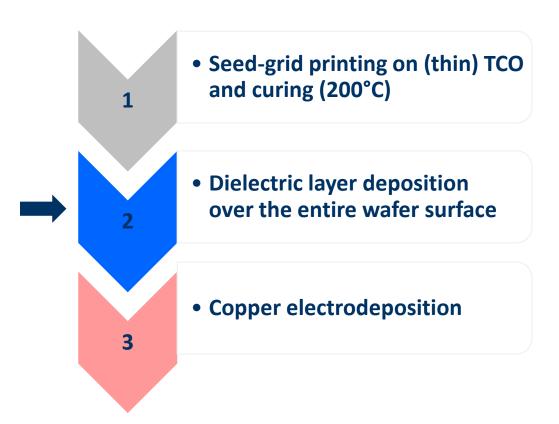

	Current consumption in production	Postulated for SUSTAINABLE TW production 1
Silver	~10 mg/W *	2 mg/W
Indium	~5 mg/W **	0.38 mg/W

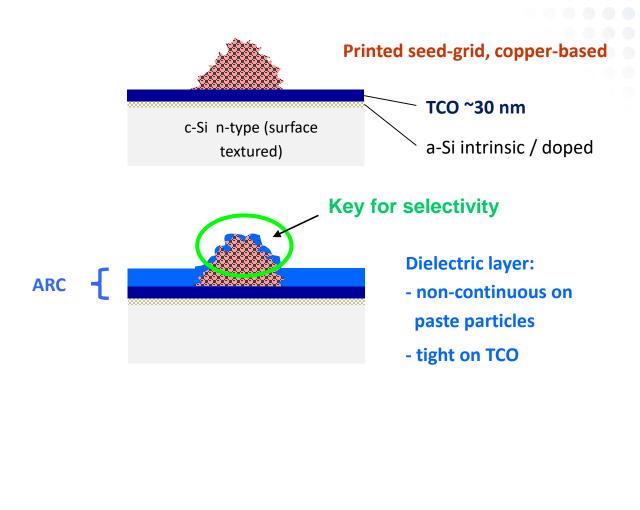
- * Depending on layout: with busbars or BB-less
- ** Calculated Indium amount on a cell with 100 nm ITO on both sides/ ITO-target consumption higher
- Y. Zhang, M. Kim, W. Li, P. Verlinden and B. Hallam, "Design considerations for multi-terawatt scale manufacturing: challenges and opportunities related to silver, indium and bismutth consumption,", 2021

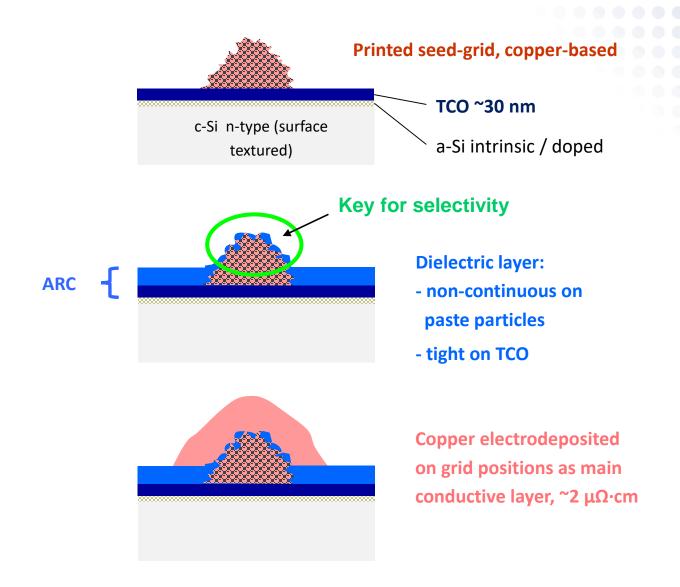
Ag & In/ITO: substantial share of cell production cost




Courtesy: Infolink, 2024

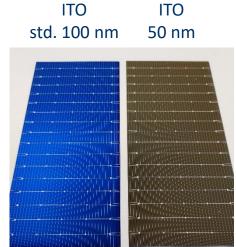



SELF-ALIGNED COPPER ELECTRODEPOSITION


SELF-ALIGNED COPPER ELECTRODEPOSITION

SELF-ALIGNED COPPER ELECTRODEPOSITION

• Seed-grid printing on (thin) TCO and curing (200°C) • Dielectric layer deposition over the entire wafer surface • Copper electrodeposition

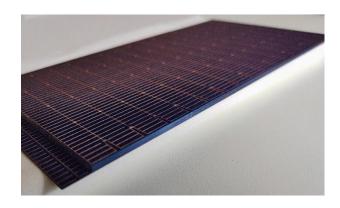


CELL RESULTS w. 50 nm ITO (1/2 M10)

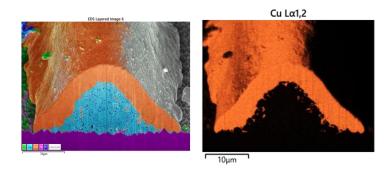
-Customer Sampling A

Group	ITO on the front side	Seed-grid
A ref.	Std. 100 nm	Std. Ag
В	50 nm	Narrower openings
С	50 nm	Std. Ag
D	50 nm	Ag/Cu
E	50 nm	On the back: pure Cu paste

Precursors from a HJT manufacturer with 50 nm ITO on the front and different seed-grid pastes

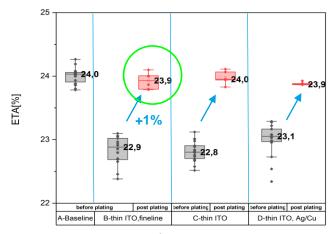


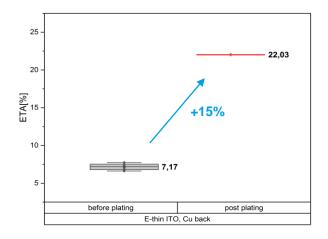
ITO 50 nm + dielectric + copper

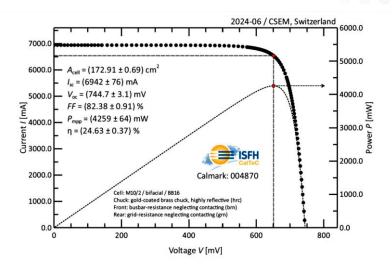

Thickness of dielectric layer adjusted for optimum ARC

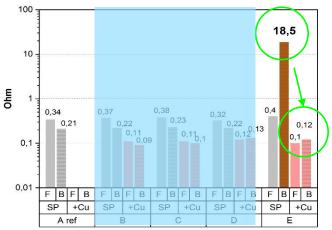
Cell edges are covered by the dielectric layer and well protected against parasitic plating.


PLATED CELLS w. 50 nm ITO (1/2 M10)


Cells w. Ag or Ag-Cu paste seed grid


Cells w. Cu plated on PURE Cu paste

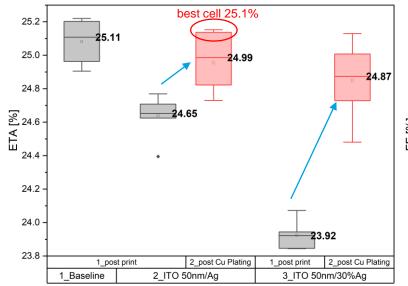

Wide fingers from screen printing of this Cu paste – used only on the back. High line resistance **18.5 Ohm** (B2B).

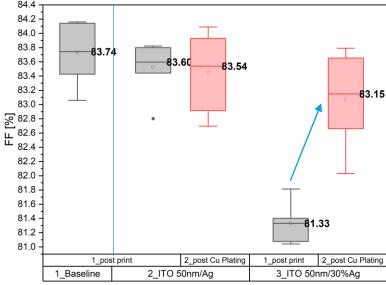


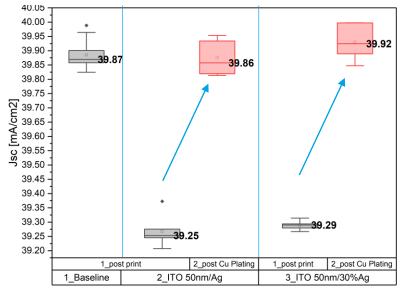
Internal IV measurement

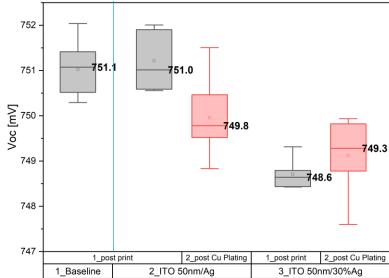
Line resistance busbar to busbar.

Grey: as printed, red: w. plated Cu;


front & back


½ G12 w. 50 nm ITO


-Customer Sampling B


Group	ITO f [nm]	ITO r[nm]	Paste f	Paste r
1_Baseline	100	100	Ag	Ag
2_ITO 50nm/Ag	50	100	Ag	Ag
3_ITO 50nm/30% AgCu	50	100	Ag 30%	Ag 30%

- Plating results confirmed on half-G12 precursors from another manufacturer
- Same efficiency of best plated cells as of the reference group with full ITO and Ag-print (stencil)
- IV measurement from the precursor manufacturer

½ G12 w. 30 nm ITO & M2 w. 15 nm ITO

-Customer Sampling C

Precursors provided by a HJT cell manufacturer, with 30 nm ITO (on the front) and Ag paste

Group	Voc [V]	Jsc [mA/cm²]	FF [%]	Eff. [%]
Travel reference, full ITO	0.744	39.1	83.1	24.12
30 nm ITO + dielectric + Cu	0.747	38.1	84.2	23.92

IV measurement by precursor manufacturer

- M2 precursors with 15 nm ITO prepared by CEA INES:
 slightly lower efficiency of plated cells than of SP reference ¹
 - Is such a thin ITO layer still sufficient as barrier against copper?

- Efficiency after plating very close to the value of reference cells with full ITO Improvement through dielectric layer + copper plating: 1.4%abs.
- Jsc on precursors as received (w. 30 nm ITO) very low, to optimize.

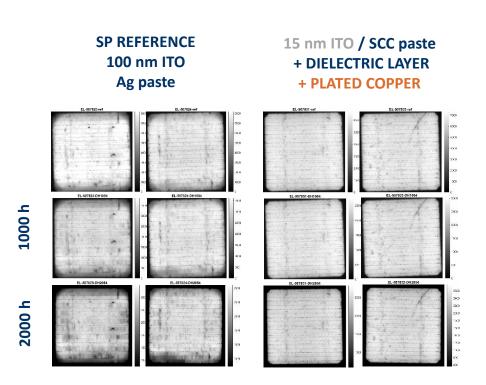
A. Lanterne et al., Copper-Plating Metallization of low-Indium Heterjunction Solar Cells, MIW, 2024, https://miworkshop.info/wp-content/uploads/2024/11/B_02_Lanterne_MIW2024_poster-2024.pdf

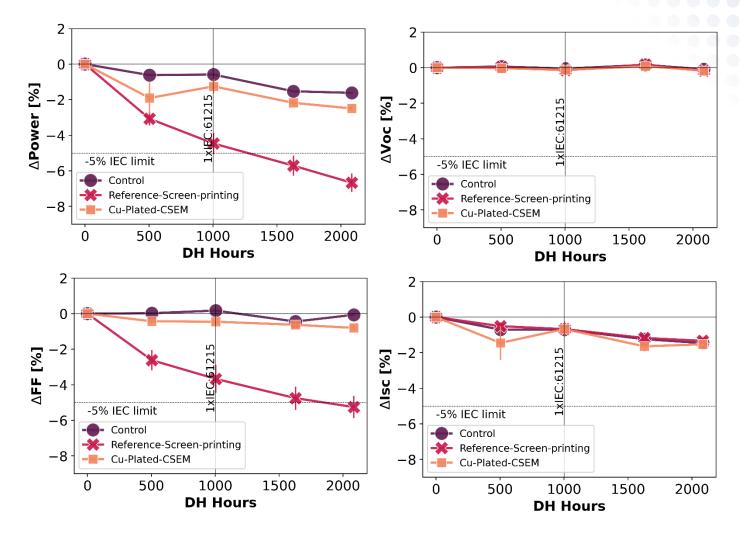
OUTLINES

- PROCESS
- CELL RESULTS
- DH STABILITY
- COST & MATERIALS

3 steps

w. 50 & 30 nm ITO


w. copper on 15 nm ITO


comparison w. SP

SEED GRID FORMATION BY FLEXTRAIL PRINTING

CELLS w. 15 nm ITO & PLATED COPPER: DH STABILITY

- Screen-printed reference: degradation in FF / interconnection
- Plated cells w. 15 nm ITO: degradation -2% after 2000 hours DH Voc stable!

M2 cells from CEA Ines, Smartwire interconnection at CSEM

OUTLINES

- PROCESS
- CELL RESULTS
- DH STABILITY
- COST & MATERIALS

3 steps

w. 50 & 30 nm ITC

w. copper on 15 nm ITO

comparison w. SP

SEED GRID FORMATION BY FLEXTRAIL PRINTING

COST CALCULATION

- All data for cost calculation received from a multi-GW Chinese manufacturer; 2024
- Silver price = 1670 USD/kg
- Indium price = 357 USD/kg

Kept constant for all options:

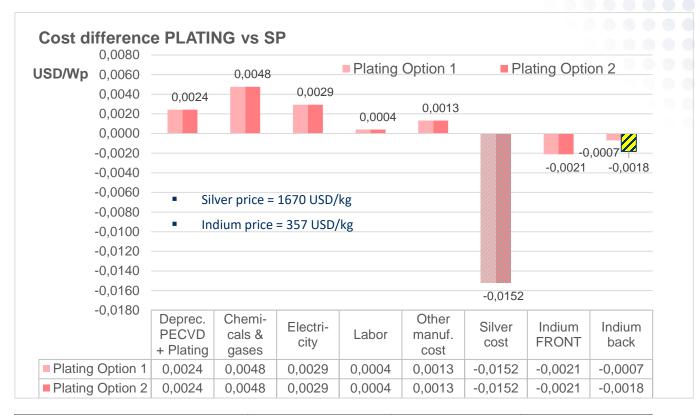
Efficiency 25.0%

■ Power 5.52 W (½G12)

Layout w. 18 busbars

Item / option	SCREEN PRINTING	PLATING Option 1	PLATING Option 2
SP fingers: Paste	Cu/Ag-50%	Cu/Ag-30%	Cu/Ag-30%
SP fingers: Laydown	100%	60%	60%
SP BB: Paste	100% Ag	Cu/Ag-30%	Cu/Ag-30%
SP BB: Laydown	100%	60%	60%
ITO FRONT	100 nm	30 nm	30 nm
ITO Back	100 nm	80 nm	indium-free
Equipment SP and PVD	baseline	baseline	baseline

Further savings through equipment modifications not considered in the calculation:


- Fingers and busbar print in one step
- Smaller PVD line for thinner ITO

COST PLATING vs SP

- Cost difference for plating options 1 and 2 compared to baseline screen printing with silver-coated-copper paste (Cu/Ag-50%)
- Main additional costs for plating
 - PECVD and plating line
 - Chemicals and gases
- Savings: mainly silver paste, smaller impact of ITO reduction (at current In price)

- Overall, the process cost for plating is slightly lower than that of screen printing with silver-coated copper paste.
- The consumption of silver as well as of indium is strongly reduced.

Item / option	SCREEN PRINTING	PLATING Option 1	PLATING Option 2
CoO in USD/Wp (w/o Si)	0.051 (0.048 in Sep)	0.044 (0.044 in Sep)	0.043 (0.042 in Sep)
Ag reduction	100%	60%	60%
Indium on the cell in mg/Wp	4.7	2.6	0.7

OUTLINES

- PROCESS
- CELL RESULTS
- DH STABILITY
- COST & MATERIALS

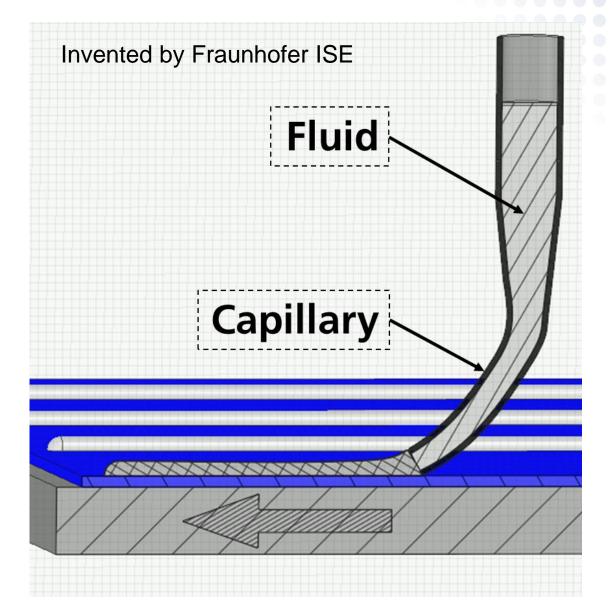
3 steps

w. 50 & 30 nm ITC

w. copper on 15 nm ITO

comparison w. SP

SEED GRID FORMATION BY FLEXTRAIL PRINTING

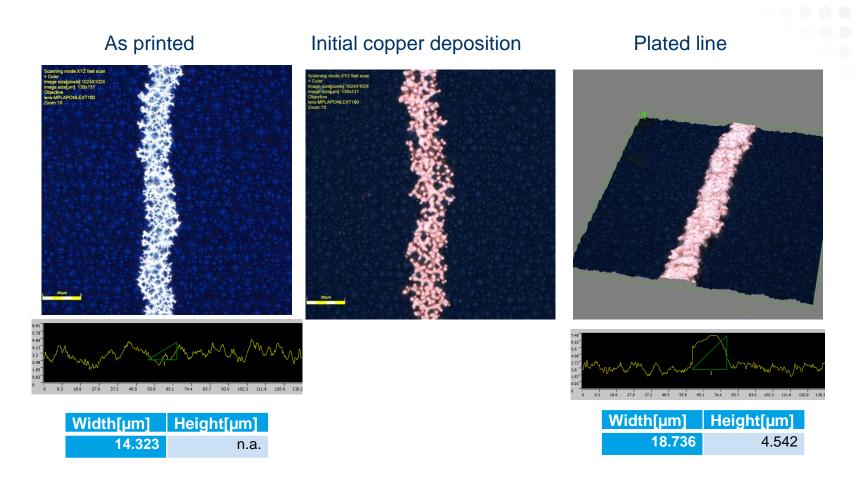

FLEXTRAIL PRINTING PRINCIPLE^[1,2]

Working principle

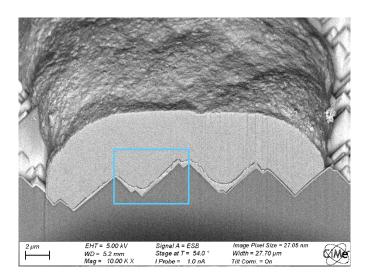
- Flexible capillary in contact with substrate
 - > Single-capillary printing so far
- Continuous printing
- Surface energies as driving forces
 - > Independent printing technique
- Printing speed of up to 500 mm/s demonstrated

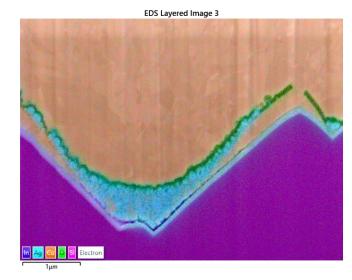
Motivation

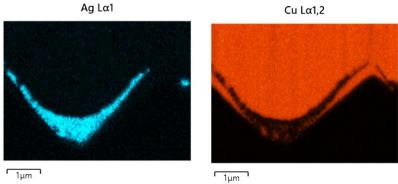
- Wide viscosity range > little requirements for fluid
- Resource saving
- Broad field of applications



FLEXTRAIL PRINTING: FIRST TEST ON M2 PRECURSORS

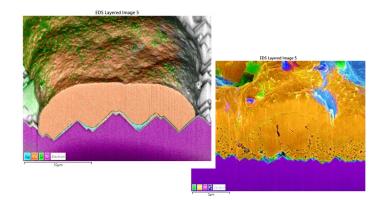

- First test / print only on the front.
 Very shallow, even not fully continuous lines.
- Good copper coverage on this "almost-nothing"-seed-grid
- And:
 good adhesion of plated lines
 (tape test)

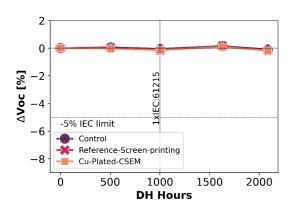




FLEXTRAIL PRINTING: FIRST TEST / CROSS SECTIONS

- Slight accumulation of the ink in the valleys of the pyramids Ink amount estimated to be below 1 mg/W.
- Copper signal observed also in between ink particles and in direct contact to ITO.




ENABLING SUSTAINABLE PRODUCTION OF HETEROJUNCTION CELLS:

■ Ag < 1mg/W

Seed grid formation by Flextrail printing or with pure copper paste

■ In ~ 0.7 mg/W

15 nm ITO sufficient as copper barrier; ARC: ITO+dielectric

THANK YOU VERY MUCH FOR YOUR ATTENTION!

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101058583 RESILEX and No 101172902 SHINE-PV.

