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Introduction and Motivation
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Motivation
Fine-line Screen Printing

▪ Reliable

▪ Robust

▪ Cost - effective

[1] S. Tepner, A. Lorenz, Progr. Photovolt Res Appl 31 (6), S. 557–590. DOI: 10.1002/pip.3674. 

[2] ITRPV, 2025 

▪ Expected to remain leading method of metallization 

over the next decade 

[1]

[2]
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Motivation
Screen structuring with laser technology

▪ To achieve terawatt level PV production sustainably, silver 

consumption must be reduced[1]

[1] M. Kim, Y. Zhang, P. Verlinden, B. Hallam, Towards sustainable silicon PV manufacturing at the terawatt level, in: SiliconPV 2021, the 11th International 
Conference on Crystalline Silicon Photovoltaics, Hamelin, Germany/Online, 2022 90001
[2] ITRPV, 2025
[3]AI generated image
[4] Brave C&H supply Co [Online], https://en.bch.com.tw/ , Accessed 14.10.25.

▪ Finger width of front side metalliztion expected to reach 

12 µm in 2035

▪ This goal can be realized by optimizing the screen 

structuring process through: 

▪ Laser structuring

▪ Technology introduced in 2018[4]

▪ Aim: To further optimize this process and obtain finer 

openings

[2]

[3]

https://en.bch.com.tw/
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Motivation
Screen structuring with laser technology: Advantages

Squeegee side

Wafer side

Mesh

Advantages:

▪ Flexibility to laser any barrier layer material

▪ Tapering effect can be tuned

▪ Faster than “traditional” photolithography 

▪ Precision: Could be used to create 

openings between wires in case of knotless 

screens

▪ Potentially finer openings (i.e. for contact 

fingers)
wch,s

wch,w
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Motivation 
Laser structuring of screens, published results

▪ Successful laser structuring of full layout in 10 

minutes on 520/11/0° screen and hybrid barrier 

layer 

17 µm

9 µm

20 µm

20 µm

[1] A. Nair, SOLMAT, DOI: 10.1016/j.solmat.2025.113732 (2025)

22 µm

7 µm

3 µm

20 µm

▪ Channel opening was tapered

▪ Average finger width of 23 µm measured on M2 

HJT wafers 
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Optimization of laser 

parameters using statistical 

analysis
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Optimization of laser parameters using statistical analysis
Parameters varied

▪ Laser structuring process is highly 

dependent on several critical input laser 

parameters

▪ These parameters are crucial to determine 

the desired screen opening width and 

taper Laser power 

Values: (0.049 W – 

0.15 W)

Number of passes

Values: 5 - 20

Scanning speed

Values: 750 mm/s – 

1500 mm/s

Line-line pitch

Values: 2 µm – 4 µm

▪ Following laser input parameters were 

varied:

*

*AI generated image
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Optimization of laser parameters using statistical analysis
Parameters varied

▪ Output parameters measured were: 

Damage on 

mesh

Print results of the 

varying openings

Squeegee side 

opening

Wafer side opening

*

*AI generated image
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Optimization of laser parameters using statistical analysis
Results

▪ Power had the highest impact on the screen structuring process 

[1] A. Nair (to be published)
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Optimization of laser parameters using statistical analysis
Results

▪ Power had the highest impact on the screen structuring process

▪ Predicted probability: Find parameter combinations that cause least damage to screen and successful print is expected 

[1] A. Nair (to be published)
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Optimization of laser parameters using statistical analysis
Results

▪ Predicted probability of the input laser parameters yields predicted wafer and squeegee side measurements 

that cause less damage to the mesh 

[1] A. Nair (to be published)
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Optimization of laser parameters using statistical analysis
Results

▪ Predicted probability of the wafer and squeegee side values yields predicted finger core width (fcw) 

measurements 

[1] A. Nair (to be published)
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Optimization of laser parameters using statistical analysis
Results

▪ Predicted probability of the wafer and squeegee side values yields predicted finger core width (fcw) 

measurements 

[1] A. Nair (to be published)
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M10 TOPCon metallized cells 

with laser structured screens
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M10 TOPCon metallized cells with laser structured screens
Aim and experimental setup

A

Experimental setup – Overview of screen variations for the conducted

TOPCon fine line test batch. 

Aim:

▪ Compare in-house lasered screens with an industry 

standard screen

Experimental setup:

▪ Screen/paste variation:

▪ Fraunhofer ISE TOPCon precursors (M10)

▪ Constant screen opening width of 20 µm

▪ High-performance partially diluted Ag paste (B)

Screen 1
(ISE lasered)

Screen 2
(ISE lasered)

Screen 3
(ref)

Mesh
configuration

520/11/22.5° 520/11/22.5° 520/9/0°

Nom. Finger width 
wn [µm] 20 20 20

Paste B B B

Time to laser 
structure full layout

40 mins 40 mins N/a
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M10 TOPCon metallized cells with laser structured screens
Screen printing results 

Screen 1 | 520/11/22.5° Screen 2 | 520/11/22.5° Screen 3 | 520/09/0°

ISE Lasered Reference
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M10 TOPCon metallized cells with laser structured screens
Screen printing results 

A

▪ Shading width of printed fingers comparable 

with industry reference Screen 3

▪ However, higher finger resistance compared to 

industry standard due to the use of angles 

screens

Future Outlook: 

▪ Currently working on realizing laser openings 

in knotless screens
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COMSOL simulations of laser-

screen interaction
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COMSOL simulations of laser-screen interaction
Introduction and Motivation

Processes Involved during material interaction with a laser:

Energy absorption and heat 

transfer

Material 

decomposition and 

vaporization

Interface effects and 

surface recession

▪ Aim
▪ To simulate a large parameter space and corroborate with the experimental findings
▪ Advantage: Reducing parameter variation experiments and reducing screens used

[1] A. Nair (to be published)
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COMSOL simulations of laser-screen interaction
Methodology: Differential Scanning Calorimetry (DSC) measurements

▪ Ablation Temperature: 185 C

▪ Latent Heat: 685.75 J/g

▪ Laser parameters used for simulation

▪ Laser power: 0.17 Watt

▪ Pulse duration: 15 Picoseconds

▪ Wavelength: 355 nm

▪ Focal spot size radius: 4 µm

▪ Scanning speed: 3 m/s

restricted
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[1] A. Nair (to be published)



©Fraunhofer ISE

COMSOL simulations of laser-screen interaction
Results: 2D simulation

▪ Successful simulation of ablation 

mechanism on a polyimide layer

▪ At pass = 1, material of 5 µm removed 

according to simulation 

▪ Comparable with real life results obtained from 3D 

microscopy (below)

[1] A. Nair (to be published)
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Summary and Future Outlook

Results:

▪ Successful structuring of fine line openings = 20 µm on 

screens

▪ Finger widths of 21 µm printed on M10 TOPCon cells

▪ 2D COMSOL simulation of ablation by pulsed laser of 

screen similar to experimental results

Ultra narrow tapered channel in 

between two wires (500-05 mesh)

Setup of automated microscope at Fraunhofer ISE for faster and 

accurate screen characterization

Screen-Printed ultra fine 

contact with wf ~ 8 µm

Next Steps:

▪ Using the automated microscope to detect damages on 

wires

▪ Conducting print test on wafers with knotless screens 

with a screen opening of 1 µm with optimized pastes

▪ Conducting 3D COMSOL simulation of laser-screen 

interaction to gauge the taper observed in experiments



This work has been funded by the Federal Ministry for
Economic Affairs and Climate Action within the
project “Laser2Screen” (No.: 03EE1100E).

Thank you for your attention!
—
Aathira Krishnadas Nair

Aathira.krishnadas.nair@ise.fraunhofer.de
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