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Challenges for Solar Module Interconnection

October 23, 2025

Silver and Bismuth Supply Risks in the TW-Scale PV Era

The PV industry is expected to 

reach multi-terawatt scale annual 

production by 2030.

PV share of global supply:

• 50 % of the silver 

• 25 % of the bismuth
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Interconnection of heat sensitive solar cells like SHJ or perovskite tandem solar cells

Processes temperatures below 

• 200 °C for SHJ solar cells

→ Prevent H effusion

• 110 °C for perovskite solar cells

→ Prevent perovskite decomposition

Challenges for Solar Module Interconnection

→ Find alternative cell interconnection 
methods to standard IR soldering
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Alternatives Interconnection Methods tested at the FZJ
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Potential for low process temperatures and less scarce material usage
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Direct Wire Bonding (DWB)

October 23, 2025

Silver Reduction for Silicon Heterojunction Solar Cells

Liu, Yanxin, et al. "Silver reduction through direct wire bonding 
for Silicon Heterojunction solar cells." Solar Energy Materials 
and Solar Cells 282 (2025): 113412.
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Alternatives Interconnection Methods tested at the FZJ
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Potential for low process temperatures and less scarce material usage

Page 6

Multi Wire Foil Direct Wire 
Bonding (DWB)

Electrically 
Conductive 
Adhesive (ECA)

Electrically 
Conductive Tape 
(ECT)



Introduction: Electrically Conductive Tape 
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Application of ECT in Integrated Circuits (IC)

Li, Yi Grace, Daniel Lu, and C. P. Wong. Electrical conductive adhesives with 

nanotechnologies. Springer Science & Business Media, 2009

• Metal particles embedded in adhesive polymer
• Isotropic conductivity beneficial for IC interconnection

→ Use ECT in solar cells

Page 7



3 Tested Types of Electrical Conductive Tape
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ECT1: 100 µm-thick; isotropic 
conductive woven fabric 
coated on both sides with 
conductive acrylic adhesive

ECT2: 50 µm-thick; anisotropic 
tape with acrylic adhesive 
filled with Ag particles.

ECT3: 10 µm-thick; anisotropic 
tape with acrylic adhesive 
filled with Ni particles.

Page 8

ECT Adhesive Thickness



Peel Force between Tabbing Ribbon and the Busbar
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• ECT1: 100 µm-thick; isotropic conductive 
woven fabric coated on both sides with 
conductive acrylic adhesive

• ECT2: 50 µm-thick; anisotropic tape with 
acrylic adhesive filled with Ag particles.

• ECT3: 10 µm-thick; anisotropic tape with 
acrylic adhesive filled with Ni particles.
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→Good adhesion for ECT1 and 2

→Lower adhesion for the ECT3 with thin adhesive
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Solar cell Efficiency vs. Contact Resistance Calculated by 

Simulation
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• 0.1%abs. efficiency loss at 
Rc = 0.015 Ω mm2 
according to simulation

→ Maximum acceptable 
ECT contact resistance
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Evolution of Contact Resistance During Damp Heat Testing
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Rc = 0.015 Ω mm2

• initial Rc below limit for all ECTs

After damp heat:
• Rc for ECT1 increase
• Rc for ECT2,3 is stable
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Relative Changes of SHJ Modules Connected via ECT 

during DH testing
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• ECT1 modules: 

• Showed fastest degradation; 

>5% efficiency loss after ~500 h 

• Degradation mainly due to rising Rc

→ higher series resistance, reduced 

FF, lower power.

• ECT2 & ECT3 modules: 

• ECT3 was most stable (~2.5% loss, 

only 1% FF drop), 

• ECT2 had ~4% loss and 2% FF drop.
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Evolution of Contact Resistance during Thermal Cycling 

Testing

October 23, 2025

ECT-2: 

• Rc increases above the Rc = 

0.015 Ω mm2 limit

ECT-3: 

• Rc increase during TC testing

• still way below the Rc limit even 

after 200 cycles
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Relative Changes of SHJ Modules Connected via ECT 

during TC testing.

October 23, 2025
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ECT-2: 

• ~2% efficiency drop in the first 

100 cycles, then stabilized

ECT-3: 

• Very stable under TC

• efficiency loss minimal (<1% 

relative)

• Voc and Jsc unchanged
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Summary

✓Low temperature, solder free interconnection, cost efficient method

✓Reduces the Ag / Bi consumption of solar modules

✓Stable under damp heat / thermal cycling

✓Anisotropic tapes showed superior performance in contrast to isotopic tape

➢Optimize ECT for good stability combined with high peel force (ECT3 vs. ECT2)

October 23, 2025

ECT as alternative interconnection technology
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